The exponential growth of microbial genome data presents unprecedented opportunities for unlocking the potential of microorganisms. The burgeoning field of pangenomics offers a framework for extracting insights from this big biological data. Recent advances in microbial pangenomic research have generated substantial data and literature, yielding valuable knowledge across diverse microbial species.
View Article and Find Full Text PDFMicrobial genome sequences are rapidly accumulating, enabling large-scale studies of sequence variation. Existing studies primarily focus on coding regions to study amino acid substitution patterns in proteins. However, non-coding regulatory regions also play a distinct role in determining physiologic responses.
View Article and Find Full Text PDFGenome mining is revolutionizing natural products discovery efforts. The rapid increase in available genomes demands comprehensive computational platforms to effectively extract biosynthetic knowledge encoded across bacterial pangenomes. Here, we present BGCFlow, a novel systematic workflow integrating analytics for large-scale genome mining of bacterial pangenomes.
View Article and Find Full Text PDFUnlabelled: , a probiotic microbe instrumental to human health and sustainable food production, adapts to diverse environmental shifts via dynamic gene expression. We applied the independent component analysis (ICA) to 117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA provides a qualitative advancement and captures nuanced relationships within gene clusters that other methods may miss.
View Article and Find Full Text PDFRelationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons).
View Article and Find Full Text PDFThe genomic diversity across strains of a species forms the genetic basis for differences in their behavior. A large-scale assessment of sequence variation has been made possible by the growing availability of strain-specific whole-genome sequences (WGS) and with the advent of large-scale databases of laboratory-acquired mutations. We define the "alleleome" through a genome-scale assessment of amino acid (AA) sequence diversity in open reading frames across 2,661 WGS from wild-type strains.
View Article and Find Full Text PDFAlthough strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms.
View Article and Find Full Text PDFThe bacterial respiratory electron transport system (ETS) is branched to allow condition-specific modulation of energy metabolism. There is a detailed understanding of the structural and biochemical features of respiratory enzymes; however, a holistic examination of the system and its plasticity is lacking. Here we generate four strains of Escherichia coli harboring unbranched ETS that pump 1, 2, 3, or 4 proton(s) per electron and characterized them using a combination of synergistic methods (adaptive laboratory evolution, multi-omic analyses, and computation of proteome allocation).
View Article and Find Full Text PDFIndependent component analysis (ICA) of bacterial transcriptomes has emerged as a powerful tool for obtaining co-regulated, independently-modulated gene sets (iModulons), inferring their activities across a range of conditions, and enabling their association to known genetic regulators. By grouping and analyzing genes based on observations from big data alone, iModulons can provide a novel perspective into how the composition of the transcriptome adapts to environmental conditions. Here, we present iModulonDB (imodulondb.
View Article and Find Full Text PDFA genome contains the information underlying an organism's form and function. Yet, we lack formal framework to represent and study this information. Here, we introduce the Bitome, a matrix composed of binary digits (bits) representing the genomic positions of genomic features.
View Article and Find Full Text PDFEnzyme turnover numbers (s) are essential for a quantitative understanding of cells. Because s are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo s using metabolic specialist strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution.
View Article and Find Full Text PDFThe ability of DNA to produce a functional protein even after transfer to a foreign host is of fundamental importance in both evolutionary biology and biotechnology, enabling horizontal gene transfer in the wild and heterologous expression in the lab. However, the influence of genetic particulars on DNA functionality in a new host is poorly understood, as are the evolutionary mechanisms of assimilation and refinement. Here, we describe an automation-enabled large-scale experiment wherein Escherichia coli strains were evolved in parallel after replacement of the genes pgi or tpiA with orthologous DNA from donor species spanning all domains of life, from humans to hyperthermophilic archaea.
View Article and Find Full Text PDFBackground: Adaptive Laboratory Evolution (ALE) has emerged as an experimental approach to discover mutations that confer phenotypic functions of interest. However, the task of finding and understanding all beneficial mutations of an ALE experiment remains an open challenge for the field. To provide for better results than traditional methods of ALE mutation analysis, this work applied enrichment methods to mutations described by a multiscale annotation framework and a consolidated set of ALE experiment conditions.
View Article and Find Full Text PDFEvolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition.
View Article and Find Full Text PDFThe ability of to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain K-12 MG1655 at pH 5.5 in glucose minimal medium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
Catalysis using iron-sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response in , called OxidizeME.
View Article and Find Full Text PDFUnderstanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E.
View Article and Find Full Text PDFPseudogenes represent open reading frames that have been damaged by mutations, rendering the gene product non-functional. Pseudogenes are found in many genomes and are not always eliminated, even if they are potentially 'wasteful'. This raises a fundamental question about their prevalence.
View Article and Find Full Text PDFBackground: Essentiality assays are important tools commonly utilized for the discovery of gene functions. Growth/no growth screens of single gene knockout strain collections are also often utilized to test the predictive power of genome-scale models. False positive predictions occur when computational analysis predicts a gene to be non-essential, however experimental screens deem the gene to be essential.
View Article and Find Full Text PDFMicrobiol Resour Announc
October 2018
Escherichia coli C is a commonly used strain in the bioprocessing industry, but despite its utility, the publicly available sequence of the E. coli C genome has gaps and 4,180 ambiguous base calls. Here, we present an updated, high-quality, unambiguous genome sequence with no assembly gaps.
View Article and Find Full Text PDFAdaptive Laboratory Evolution (ALE) has emerged as an experimental approach to discover causal mutations that confer desired phenotypic functions. ALE not only represents a controllable experimental approach to systematically discover genotype-phenotype relationships, but also allows for the revelation of the series of genetic alterations required to acquire the new phenotype. Numerous ALE studies have been published, providing a strong impetus for developing databases to warehouse experimental evolution information and make it retrievable for large-scale analysis.
View Article and Find Full Text PDFL-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli.
View Article and Find Full Text PDF