Publications by authors named "Patrick P K Chan"

In a modern e-commerce recommender system, it is important to understand the relationships among products. Recognizing product relationships-such as complements or substitutes-accurately is an essential task for generating better recommendation results, as well as improving explainability in recommendation. Products and their associated relationships naturally form a product graph, yet existing efforts do not fully exploit the product graph's topological structure.

View Article and Find Full Text PDF

The training of a multilayer perceptron neural network (MLPNN) concerns the selection of its architecture and the connection weights via the minimization of both the training error and a penalty term. Different penalty terms have been proposed to control the smoothness of the MLPNN for better generalization capability. However, controlling its smoothness using, for instance, the norm of weights or the Vapnik-Chervonenkis dimension cannot distinguish individual MLPNNs with the same number of free parameters or the same norm.

View Article and Find Full Text PDF

Pattern recognition and machine learning techniques have been increasingly adopted in adversarial settings such as spam, intrusion, and malware detection, although their security against well-crafted attacks that aim to evade detection by manipulating data at test time has not yet been thoroughly assessed. While previous work has been mainly focused on devising adversary-aware classification algorithms to counter evasion attempts, only few authors have considered the impact of using reduced feature sets on classifier security against the same attacks. An interesting, preliminary result is that classifier security to evasion may be even worsened by the application of feature selection.

View Article and Find Full Text PDF