Publications by authors named "Patrick P Gao"

Article Synopsis
  • The brain combines different types of sensory information to understand the environment and respond appropriately.
  • The study focused on how visual stimuli of varying frequencies and intensities affect auditory responses in the inferior colliculus (IC) of rats using functional MRI (fMRI).
  • Results showed that only low-frequency, high-intensity visual stimuli suppressed auditory responses in the IC, indicating that cross-modal processing depends on the characteristics of the stimuli and may involve feedback from non-visual brain areas.
View Article and Find Full Text PDF

Sensory cortices contain extensive descending (corticofugal) pathways, yet their impact on brainstem processing - particularly across sensory systems - remains poorly understood. In the auditory system, the inferior colliculus (IC) in the midbrain receives cross-modal inputs from the visual cortex (VC). However, the influences from VC on auditory midbrain processing are unclear.

View Article and Find Full Text PDF

The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity.

View Article and Find Full Text PDF

One challenge in contemporary neuroscience is to achieve an integrated understanding of the large-scale brain-wide interactions, particularly the spatiotemporal patterns of neural activity that give rise to functions and behavior. At present, little is known about the spatiotemporal properties of long-range neuronal networks. We examined brain-wide neural activity patterns elicited by stimulating ventral posteromedial (VPM) thalamo-cortical excitatory neurons through combined optogenetic stimulation and functional MRI (fMRI).

View Article and Find Full Text PDF

Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17).

View Article and Find Full Text PDF

The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway.

View Article and Find Full Text PDF

Many vertebrates communicate with ultrahigh frequency (UHF) vocalizations to limit auditory detection by predators. The mechanisms underlying the neural encoding of such UHF sounds may provide important insights for understanding neural processing of other complex sounds (e.g.

View Article and Find Full Text PDF

Objective: Resting-state functional MRI (rsfMRI) has been increasingly used for understanding brain functional architecture. To date, most rsfMRI studies have exploited blood oxygenation level-dependent (BOLD) contrast using gradient-echo (GE) echo planar imaging (EPI), which can suffer from image distortion and signal dropout due to magnetic susceptibility and inherent long echo time. In this study, the feasibility of passband balanced steady-state free precession (bSSFP) imaging for distortion-free and high-resolution rsfMRI was investigated.

View Article and Find Full Text PDF

Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property.

View Article and Find Full Text PDF

Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity.

View Article and Find Full Text PDF