Introduction: Burns are characterized by a massive and prolonged acute inflammation, which persists for up to months after the initial trauma. Due to the complexity of the inflammatory process, Predicting the dynamics of wound healing process can be challenging for burn injuries. The aim of this study was to develop simulation models for the post-burn immune response based on (pre)clinical data.
View Article and Find Full Text PDFIntroduction: Thermal injury often leads to prolonged and excessive inflammation, which hinders the recovery of patients. There is a notable absence of suitable animal-free models for investigating the inflammatory processes following burn injuries, thereby impeding the development of more effective therapies to improve burn wound healing in patients.
Methods: In this study, we established a human full skin equivalent (FSE) burn wound model and incorporated human peripheral blood-derived monocytes and T cells.
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators.
View Article and Find Full Text PDFHealing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm and Mucomaix.
View Article and Find Full Text PDFThe systemic and local immune response in burn patients is often extreme and derailed. As excessive inflammation can damage healthy tissues and slow down the healing process, modulation of inflammatory responses could limit complications and improve recovery. Due to its complexity, more detailed information on the immune effects of thermal injury is needed to improve patient outcomes.
View Article and Find Full Text PDFBecause burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to preventing secondary complications. This systematic review, which includes 247 animal studies, shows the postburn response of 14 different immune cell types involved in immediate and long-term effects in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week.
View Article and Find Full Text PDFSevere burn injury causes local and systemic immune responses that can persist up to months, and can lead to systemic inflammatory response syndrome, organ damage and long-term sequalae such as hypertrophic scarring. To prevent these pathological conditions, a better understanding of the underlying mechanisms is essential. In this longitudinal study, we analyzed the temporal peripheral blood immune profile of 20 burn wound patients admitted to the intensive care by flow cytometry and secretome profiling, and compared this to data from 20 healthy subjects.
View Article and Find Full Text PDFPriming of CD8 T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1 antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner.
View Article and Find Full Text PDFAntibiotic resistance and biofilm formation are the main reasons for failure in treatment of bacterial infections. This study aimed to identify synergistic combinations of conventional antibiotics and novel synthetic antimicrobial and antibiofilm peptides (SAAPs) inspired by the structures of the natural human cationic peptides LL-37 and thrombocidin-1 (TC-1). The LL-37-inspired lead peptide SAAP-148 was combined with antibiotics of different classes against Staphylococcus aureus, and showed synergy with teicoplanin.
View Article and Find Full Text PDFIn this study, we compared the bioNexia test (bioMérieux, Marcy-l'Étoile, France), a new immunochromatographic assay for the detection of serogroup 1 in urine, with the BinaxNOW urinary antigen test (Alere, Waltham, Massachusetts, USA). After 15 min of incubation (in accordance with the manufacturers' instructions), the sensitivities and specificities were, respectively, 76.5% and 97.
View Article and Find Full Text PDF