Phys Chem Chem Phys
July 2023
In nature, the elements of the inorganic part of the periodic table are found in three forms: metals, ions in salts & minerals, and ions in solution. The ions may be coordinated to simple or complicated ligands. They may form purely electrostatic or partially covalent bonds.
View Article and Find Full Text PDFSolution chemistry of the lanthanide(III) ions is unexplored and relevant: extraction and recycling processes exclusively operate in solution, MRI is a solution-phase method, and bioassays are done in solution. However, the molecular structure of the lanthanide(III) ions in solution is poorly described, especially for the near-IR (NIR)-emitting lanthanides, as these are difficult to investigate using optical tools, which has limited the availability of experimental data. Here we report a custom-built spectrometer dedicated to investigation of lanthanide(III) luminescence in the NIR region.
View Article and Find Full Text PDFLanthanide luminescence fascinates with a complicated electronic structure and "forbidden" transitions. By studying the photophysics of lanthanide(III) solvates, a close to ideal average coordination geometry can be used to map both electronic energy levels and transition probabilities. Some lanthanide(III) ions are simpler to study than others, and samarium(III) belongs to the more difficult ones.
View Article and Find Full Text PDFMethods Appl Fluoresc
September 2022
Detecting luminescence beyond 750-800 nm becomes problematic as most conventional detectors are less sensitive in this range, and as simple corrections stops being accurate. Lanthanide luminescence occurs in narrow bands across the spectrum from 350-2000 nm. The most emissive lanthanide(III) ions have bands from 450 nm to 850 nm, some with additional bands in the NIR.
View Article and Find Full Text PDFLanthanide luminescence contains detailed chemical information and can be used to report on several chemical analytes. This has been exploited through elaborate synthesis of responsive lanthanide complexes. Here, we report on a less elaborate approach and assemble four different nanooptodes.
View Article and Find Full Text PDFLanthanides are found in critical applications from display technology to renewable energy. Often, these rare earth elements are used as alloys or functional materials, yet access to them is through solution processes. In aqueous solutions, the rare earths are found predominantly as trivalent ions and charge balance dictates that counterions are present.
View Article and Find Full Text PDFLanthanide luminescence has been treated separate from molecular photophysics, although the underlying phenomena are the same. As the optical transitions observed in the trivalent lanthanide ions are forbidden, they do belong to the group that molecular photophysics has yet to conquer, yet the experimental descriptors remain valid. Herein, the luminescence quantum yields (ϕ), luminescence lifetimes (τ), oscillator strengths (), and the rates of nonradiative () and radiative ( ≡ ) deactivation of [Eu(HO)] were determined.
View Article and Find Full Text PDFLuminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the D Tb(iii) excited state (20 500 cm), energy transfer to D competes with back energy transfer processes and limits lanthanide-based emission.
View Article and Find Full Text PDFThe wide range of optical and magnetic properties of lanthanide(III) ions is associated with their intricate electronic structures which, in contrast to lighter elements, is characterized by strong relativistic effects and spin-orbit coupling. Nevertheless, computational methods are now capable of describing the ladder of electronic energy levels of the simpler trivalent lanthanide ions, as well as the lowest energy term of most of the series. The electronic energy levels result from electron configurations that are first split by spin-orbit coupling into groups of energy levels denoted by the corresponding Russell-Saunders terms.
View Article and Find Full Text PDFLanthanide(iii) coordination chemistry in solution is inherently complicated by the lack of directional interactions and rapid ligand exchange. The latter can be eliminated in kinetically inert complexes, but remains a challenge in complexes between lanthanide(iii) ions and smaller ligands. As multiple conformations and partial decomplexation is an issue even with multidentate ligands, it will influence the observed solution properties of complexes of smaller ligands common in the field of f-elements coordination chemistry such as acetylacetonates and dipicolinates.
View Article and Find Full Text PDFThe structure of lanthanide(III) ions in solutions high in nitrate has been debated since the early days of lanthanide coordination chemistry. The structure and properties of lanthanides in these solutions are essential in industrial rare-earth separation, as well as in the fundamental solution chemistry of these elements. Pending decades of debate, it was established that nitrate is bidentate and coordinates in the inner sphere, and complexes have been observed with as many as four nitrates coordinated to a single lanthanide(III) center in nonaqueous solutions.
View Article and Find Full Text PDFThree series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation.
View Article and Find Full Text PDF