Metal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air.
View Article and Find Full Text PDFAtomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce rings linked by monomeric cation units, for CO oxidation. CuCe emerged as the best performing MCe catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity.
View Article and Find Full Text PDFThe development of adsorbents with molecular precision offers a promising strategy to enhance storage of hydrogen and methane─considered the fuel of the future and a transitional fuel, respectively─and to realize a carbon-neutral energy cycle. Herein we employ a postsynthetic modification strategy on a robust metal-organic framework (MOF), MFU-4l, to boost its storage capacity toward these clean energy gases. MFU-4l-Li displays one of the best volumetric deliverable hydrogen capacities of 50.
View Article and Find Full Text PDFChemphyschem
November 2021
The dynamics of carbon dioxide in third generation (i. e., flexible) Metal-Organic Frameworks (MOFs) can be experimentally observed by C NMR spectroscopy.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are coordination networks with organic ligands containing potential voids. Some MOFs show pronounced structural flexibility that may result in closing and re-opening these pores. Here, we show that collective flexibility in a MOF-DUT-8(Ni) - is controlled by conformational isomerism.
View Article and Find Full Text PDF