Sepsis remains a significant cause of morbidity and mortality worldwide. Although many more patients are surviving the acute event, a substantial number enters a state of persistent inflammation and immunosuppression, rendering them more vulnerable to infections. Modulating the host immune response has been a focus of sepsis research for the past 50 years, yet novel therapies have been few and far between.
View Article and Find Full Text PDFIntroduction: Sepsis is a complex clinical syndrome characterized by a heterogenous host immune response. Historically, static protein and transcriptomic metrics have been employed to describe the underlying biology. Here, we tested the hypothesis that functional TNF expression as well as an immunologic endotype based on both IFNγ and TNF expression could be used to model clinical outcomes in sepsis patients.
View Article and Find Full Text PDFSepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis ('SPIES') is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay.
View Article and Find Full Text PDFAt present, a substantial number of individuals in the US face limited English proficiency (LEP), posing difficulties for healthcare providers. Language barriers between healthcare providers and patients can lead to poor quality of care, especially in patients with hyperacute conditions such as stroke, myocardial infarction, acute trauma, and more. In the intensive care unit (ICU), diagnosis and rapid treatment decision-making rely on taking an accurate patient history and physical exam.
View Article and Find Full Text PDFBACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.
View Article and Find Full Text PDFBackground: Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.
View Article and Find Full Text PDFImportance: Spanish-speaking participants are underrepresented in clinical trials, limiting study generalizability and contributing to ongoing health inequity. The Comparison of Outcomes of Antibiotic Drugs and Appendectomy (CODA) trial intentionally included Spanish-speaking participants.
Objective: To describe trial participation and compare clinical and patient-reported outcomes among Spanish-speaking and English-speaking participants with acute appendicitis randomized to antibiotics.
Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells.
View Article and Find Full Text PDFBackground: Lymphopenia contributes to the immune suppression observed in critical illness. However, its role in the immunologic response to trauma remains unclear. Herein, we assessed whether admission lymphopenia is associated with poor outcomes in patients with blunt chest wall trauma (BCWT).
View Article and Find Full Text PDFWe recently demonstrated how sepsis influences the subsequent development of experimental autoimmune encephalomyelitis (EAE) presented a conceptual advance in understanding the postsepsis chronic immunoparalysis state. However, the reverse scenario (autoimmunity prior to sepsis) defines a high-risk patient population whose susceptibility to sepsis remains poorly defined. In this study, we present a retrospective analysis of University of Iowa Hospital and Clinics patients demonstrating increased sepsis prevalence among multiple sclerosis (MS), relative to non-MS, patients.
View Article and Find Full Text PDFThe global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) is a major cause of mortality and disability associated with increased risk of secondary infections. Identifying a readily available biomarker may help direct TBI patient care. Herein, we evaluated whether admission lymphopenia could predict outcomes of TBI patients.
View Article and Find Full Text PDFObjectives: Multicenter data on the characteristics and outcomes of children hospitalized with coronavirus disease 2019 are limited. Our objective was to describe the characteristics, ICU admissions, and outcomes among children hospitalized with coronavirus disease 2019 using Society of Critical Care Medicine Discovery Viral Infection and Respiratory Illness Universal Study: Coronavirus Disease 2019 registry.
Design: Retrospective study.
The dysregulated host response and organ damage following systemic infection that characterizes a septic event predisposes individuals to a chronic immunoparalysis state associated with severe transient lymphopenia and diminished lymphocyte function, thereby reducing long-term patient survival and quality of life. Recently, we observed lasting production of reactive oxygen species (ROS) in mice that survive sepsis. ROS production is a potent mechanism for targeting infection, but excessive ROS production can prove maladaptive by causing organ damage, impairing lymphocyte function, and promoting inflammaging, concepts paralleling sepsis-induced immunoparalysis.
View Article and Find Full Text PDFThe dysregulated sepsis-induced cytokine storm evoked during systemic infection consists of biphasic and interconnected pro- and anti-inflammatory responses. The contrasting inflammatory cytokine responses determine the severity of the septic event, lymphopenia, host survival, and the ensuing long-lasting immunoparalysis state. NK cells, because of their capacity to elaborate pro- (i.
View Article and Find Full Text PDFBackground: Unanticipated admissions are a burden to the health care system. Over 400 000 outpatient laparoscopic cholecystectomies (LCs) are performed annually in the United States. The aim of this study is to identify causes of unanticipated admissions and modifiable risk factors.
View Article and Find Full Text PDFImportance: Surgical site infections increase patient morbidity and health care costs. The Centers for Disease Control and Prevention emphasize improved basic preventive measures to reduce bacterial transmission and infections among patients undergoing surgery.
Objective: To assess whether improved basic preventive measures can reduce perioperative Staphylococcus aureus transmission and surgical site infections.
Background: In patients with blunt splenic injury (BSI), patient selection, angiography, and embolization have contributed to low nonoperative management (NOM) failure rates. Despite these advances, some patients will fail NOM. We noted that a significant proportion of NOM failures had subcapsular hematomas (SCHs) identified on imaging.
View Article and Find Full Text PDFThe ways in which human cytomegalovirus (HCMV) major immediate-early (MIE) gene expression breaks silence from latency to initiate the viral replicative cycle are poorly understood. A delineation of the signaling cascades that desilence the HCMV MIE genes during viral quiescence in the human pluripotent N-Tera2 (NT2) cell model provides insight into the molecular mechanisms underlying HCMV reactivation. In this model, we show that phorbol 12-myristate 13-acetate (PMA) immediately activates the expression of HCMV MIE RNA and protein and greatly increases the MIE-positive (MIE(+)) NT2 cell population density; levels of Oct4 (pluripotent cell marker) and HCMV genome penetration are unchanged.
View Article and Find Full Text PDFThe triggering mechanisms underlying reactivation of human cytomegalovirus (HCMV) in latently infected persons are unclear. During latency, HCMV major immediate-early (MIE) gene expression breaks silence to initiate viral reactivation. Using quiescently HCMV-infected human pluripotent embryonal NTera2 cells (NT2) to model HCMV reactivation, we show that vasoactive intestinal peptide (VIP), an immunomodulatory neuropeptide, immediately and dose-dependently (1 to 500 nM) activates HCMV MIE gene expression.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) major immediate-early (MIE) enhancer contains five functional cyclic AMP (cAMP) response elements (CRE). Because the CRE in their native context do not contribute appreciably to MIE enhancer/promoter activity in lytically infected human fibroblasts and NTera2 (NT2)-derived neurons, we postulated that they might have a role in MIE enhancer/promoter reactivation in quiescently infected cells. Here, we show that stimulation of the cAMP signaling pathway by treatment with forskolin (FSK), an adenylyl cyclase activator, greatly alleviates MIE enhancer/promoter silencing in quiescently infected NT2 neuronal precursors.
View Article and Find Full Text PDF