Chronic viral infections are associated with hematopoietic suppression, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. However, how persistent viral challenge and inflammatory responses target BM tissues and perturb hematopoietic competence remains poorly understood. Here, we combine functional analyses with advanced 3D microscopy to demonstrate that chronic infection with lymphocytic choriomeningitis virus leads to (1) long-lasting decimation of the BM stromal network of mesenchymal CXCL12-abundant reticular cells, (2) proinflammatory transcriptional remodeling of remaining components of this key niche subset, and (3) durable functional defects and decreased competitive fitness in HSCs.
View Article and Find Full Text PDFFluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited.
View Article and Find Full Text PDFor mutant MAP2K1 expression in human CB CD34 HSPCs lead to Langerhans cell–like histiocytosis in immune-deficient mice. -expressing human CB CD34 HSPCs did not generate hairy cell leukemia in xenograft mouse models.
View Article and Find Full Text PDFThe bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches.
View Article and Find Full Text PDFBone marrow (BM) stromal cells provide the regulatory framework for hematopoiesis and contribute to developmental stage-specific niches, such as those preserving hematopoietic stem cells. Despite advances in our understanding of stromal function, little is known about the transcriptional changes that this compartment undergoes throughout lifespan and during adaptation to stress. Using RNA sequencing, we perform transcriptional analyses of four principal stromal subsets, namely CXCL12-abundant reticular, platelet-derived growth factor receptor (PDGFR)-αSca1, sinusoidal, and arterial endothelial cells, from early postnatal, adult, and aged mice.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) have been long proposed to reside in defined anatomical locations within bone marrow (BM) tissues in direct contact or close proximity to nurturing cell types. Imaging techniques that allow the simultaneous mapping of HSCs and interacting cell types have been central to the discovery of basic principles of these so-called HSC niches. Despite major progress in the field, a quantitative and comprehensive model of the cellular and molecular components that define these specialized microenvironments is lacking to date, and uncertainties remain on the preferential localization of HSCs in the context of complex BM tissue landscapes.
View Article and Find Full Text PDFSinusoidal endothelial cells and mesenchymal CXCL12-abundant reticular cells are principal bone marrow stromal components, which critically modulate haematopoiesis at various levels, including haematopoietic stem cell maintenance. These stromal subsets are thought to be scarce and function via highly specific interactions in anatomically confined niches. Yet, knowledge on their abundance, global distribution and spatial associations remains limited.
View Article and Find Full Text PDFSpatially confined green-to-red photoconversion of fluorescent proteins with high-power, pulsed laser illumination is negligible, thus precluding optical selection of single cells in vivo. We report primed conversion, in which low-power, dual-wavelength, continuous-wave illumination results in pronounced photoconversion. With a straightforward addition to a conventional confocal microscope, we show confined primed conversion in living zebrafish and reveal the complex anatomy of individual neurons packed between neighboring cells.
View Article and Find Full Text PDF