Brominated phenolic compounds (BPCs) are found in the environment, and in human and wildlife tissues, and some are considered to have endocrine disrupting activities. The goal of this study was to determine how structural differences of 3 BPC classes impact binding affinities for the thyroid receptor beta (TRβ) in humans and zebrafish. BPC classes included halogenated bisphenol A derivatives, halogenated oxidative transformation products of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and brominated phenols.
View Article and Find Full Text PDFRecent studies have demonstrated that a number of environmental contaminants can act as metabolic disruptors and modulate metabolic function both in vitro and in vivo. 3T3-L1 mouse preadipocytes are commonly utilized to assess perturbations to adipogenesis, providing insight into environmental contaminants that may impact in vivo metabolic health. This study sought to assess whether various alkylphenol ethoxylates and alcohol ethoxylates (APEOs and AEOs, respectively), ubiquitous contaminants used in common household products, could disrupt metabolic health.
View Article and Find Full Text PDF