A key resource in quantum-secured communication protocols are single photon emitters. For long-haul optical networks, it is imperative to use photons at wavelengths compatible with telecom single mode fibers. We demonstrate high purity single photon emission at 1.
View Article and Find Full Text PDFWe report on a platform for the production of single photon devices with a fabrication yield of 100%. The sources are based on InAsP quantum dots embedded within position-controlled bottom-up InP nanowires. Using optimized growth conditions, we produce large arrays of structures having highly uniform geometries.
View Article and Find Full Text PDFPhotonics-based quantum information technologies require efficient, high emission rate sources of single photons. Position-controlled quantum dots embedded within a broadband nanowire waveguide provide a fully scalable route to fabricating highly efficient single-photon sources. However, emission rates for single-photon devices are limited by radiative recombination lifetimes.
View Article and Find Full Text PDFIt has been known for many years that during filamentation of femtosecond light pulses in air, gain is observed on the B to X transition in N_{2}^{+}. While the gain mechanism remains unclear, it has been proposed that recollision, a process that is fundamental to much of strong field science, is critical for establishing gain. We probe this hypothesis by directly comparing the influence of the ellipticity of the pump light on gain in air filaments.
View Article and Find Full Text PDF