Publications by authors named "Patrick L Williamson"

Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS.

View Article and Find Full Text PDF

Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties.

View Article and Find Full Text PDF

The best understood consequence of the collapse of lipid asymmetry is exposure of phosphatidylserine (PS) in the external leaflet of the plasma membrane bilayer, where it is known to serve at least two major functions: providing a platform for development of the blood coagulation cascade and presenting the signal that induces phagocytosis of apoptotic cells. Lipid asymmetry is collapsed by activation of phospholipid scramblase(s) that catalyze bidirectional transbilayer movement of the major classes of phospholipid. The protein corresponding to this activity is not yet known.

View Article and Find Full Text PDF

P-type ATPases are a venerable family of ATP-dependent ion transporters. Recently, evidence was presented that a rabbit gene in the type IV subfamily of P-type ATPases was missing a transmembrane helix (transmembrane domain 4) thought to be critical for ion transport, a deletion that would place the two major catalytic loops of the enzyme on opposite sides of the membrane. It was proposed that the resulting protein was a RING finger-binding protein that targets transcription factors to specific domains within the nucleus.

View Article and Find Full Text PDF