Publications by authors named "Patrick Keil"

A computational study was performed to investigate the dynamics of aqueous electrolytes containing organic corrosion inhibitors near electrified interfaces by using the constant-charge model in classical molecular dynamics simulations. The results showed that when inhibitors form films at the interface, the surface charge of the electrode causes displacement of the molecules, referred to as electroporation. The hydrophobicity of the inhibitor molecules affects both the stability of the films and their recovery time.

View Article and Find Full Text PDF

Environmentally friendly and sustainable methods to protect hot-dip galvanized (HDG) steel from corrosion are extensively studied. Films of the biopolymer polyelectrolyte chitosan were ionically cross-linked in this work with the well-known corrosion inhibitors phosphate and molybdate. Layers on this basis are presented as components in a protective system and could, e.

View Article and Find Full Text PDF

For many decorative applications like industrial and architectural paints, prevention of metal substrates from corrosion is a primary function of organic coatings. Triggered release of inhibitor species is generally accepted as a remedy for starting corrosion in case of coatings damage. A polyurethane based coating, doped with bola-amphiphiles of varying molecular weight but with a common head group motif that stems from ring-opened alkenyl succinic anhydride, enables passivation of the defect and mitigates cathodic delamination, if applied on cold rolled steel.

View Article and Find Full Text PDF

Materials science in general, and surface/interface science in particular, have greatly benefited from the development of high energy synchrotron radiation facilities. Irradiation with intense ionizing beams can however influence relevant sample properties. Permanent radiation damage and irradiation-induced sample modifications have been investigated in detail during the last decades.

View Article and Find Full Text PDF

Dealloying is widely utilized but is a dangerous corrosion process as well. Here we report an atomistic picture of the initial stages of electrochemical dealloying of the model system Cu(3)Au (111). We illuminate the structural and chemical changes during the early stages of dissolution up to the critical potential, using a unique combination of advanced surface-analytical tools.

View Article and Find Full Text PDF

In situ backside surface enhanced Raman spectroscopy (in situ-SERS) was newly employed for the study of the transport of inhibiting molecules through a polymer film. The barrier properties of layer-by-layer polyelectrolyte films (PE) composed of polyacrylic acid and polyallylamine hydro-chloride layers on Ag-surfaces were compared between untreated, thermally crosslinked, and Ag-nanoparticles containing samples. IB-SERS enabled the study of the transport of 2-mercaptobenzimidazole (MBI) as an inhibitor through the film.

View Article and Find Full Text PDF

The influence of adding InF as a reducing agent on the oxidation state of Eu in fluorochloro- (FCZ) and fluorobromozirconate (FBZ) glass ceramics was investigated using x-ray absorption near edge (XANES) and photoluminescence (PL) spectroscopy. For both materials, it was found that InF decreases the Eu-to-Eu ratio significantly. PL spectroscopy proved that an annealing step leads to the formation of Eu-doped BaCl and BaBr nanocrystals in the FCZ and FBZ glasses, respectively.

View Article and Find Full Text PDF

Adsorbed silver nanoparticles were prepared by means of electron beam evaporation of silver on ultra thin Si-supported heptadecafluoro-1-decene plasma polymer films and self-assembled heptadecafluorodecyl-trimethoxysilane monolayers. The morphology of the silver nanoparticles, characterized by their size, size distribution, shape and interparticle separation, was observed to depend on the type, chemical composition and surface energy of the sub-layer as well as the amount of silver deposited. Field emission-scanning electron microscopy was used to study the change in the morphology of the silver nanoparticles as a function of the preparation parameters.

View Article and Find Full Text PDF