As the world electrifies, global battery production is expected to surge. However, batteries are both difficult to produce at the gigawatt-hour scale and sensitive to minor manufacturing variation. As a result, the battery industry has already experienced both highly-visible safety incidents and under-the-radar reliability issues-a trend that will only worsen if left unaddressed.
View Article and Find Full Text PDFBattery technology is increasingly important for global electrification efforts. However, batteries are highly sensitive to small manufacturing variations that can induce reliability or safety issues. An important technology for battery quality control is computed tomography (CT) scanning, which is widely used for non-destructive 3D inspection across a variety of clinical and industrial applications.
View Article and Find Full Text PDFSimultaneously optimizing many design parameters in time-consuming experiments causes bottlenecks in a broad range of scientific and engineering disciplines. One such example is process and control optimization for lithium-ion batteries during materials selection, cell manufacturing and operation. A typical objective is to maximize battery lifetime; however, conducting even a single experiment to evaluate lifetime can take months to years.
View Article and Find Full Text PDFIn this work, we leverage graphene's unique tunable Seebeck coefficient for the demonstration of a graphene-based thermal imaging system. By integrating graphene based photothermo-electric detectors with micromachined silicon nitride membranes, we are able to achieve room temperature responsivities on the order of ~7-9 V/W (at λ = 10.6 μm), with a time constant of ~23 ms.
View Article and Find Full Text PDFWe explore the photoresponse of an ambipolar graphene infrared thermocouple at photon energies close to or below monolayer graphene's optical phonon energy and electrostatically accessible Fermi energy levels. The ambipolar graphene infrared thermocouple consists of monolayer graphene supported by an infrared absorbing material, controlled by two independent electrostatic gates embedded below the absorber. Using a scanning infrared laser microscope, we characterize these devices as a function of carrier type and carrier density difference controlled at the junction between the two electrostatic gates.
View Article and Find Full Text PDF