Animal-borne video loggers are powerful tools for investigating animal behaviour because they directly record immediate and extended peripheral animal activities; however, typical video loggers capture only a limited area on one side of an animal being monitored owing to their narrow field of view. Here, we investigated the resting behaviour of humpback whales using an animal-borne omnidirectional video camera combined with a behavioural data logger. In the video logger footage, two non-tagged resting individuals, which did not spread their flippers or move their flukes, were observed above a tagged animal, representing an apparent bout of group resting.
View Article and Find Full Text PDFAir-breathing marine predators that target sub-surface prey have to balance the energetic benefit of foraging against the time, energetic and physiological costs of diving. Here we use on-animal data loggers to assess whether such trade-offs can be revealed by the breathing rates (BR) and timing of breaths in long-finned pilot whales (). We used the period immediately following foraging dives in particular, for which respiratory behavior can be expected to be optimized for gas exchange.
View Article and Find Full Text PDFThe time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation.
View Article and Find Full Text PDF