Publications by authors named "Patrick J Webber"

Many areas of the Arctic are simultaneously affected by rapid climate change and rapid industrial development. These areas are likely to increase in number and size as sea ice melts and abundant Arctic natural resources become more accessible. Documenting the changes that have already occurred is essential to inform management approaches to minimize the impacts of future activities.

View Article and Find Full Text PDF

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change.

View Article and Find Full Text PDF

Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512).

View Article and Find Full Text PDF
Article Synopsis
  • Global change is altering alpine ecosystems, impacting plant distributions and community composition, but there’s a lack of long-term studies observing these changes.
  • A probabilistic modeling approach was used to forecast vegetation change on Niwot Ridge, CO, based on plant data collected from plots established in 1971 and resampled in 1991 and 2001.
  • The models predict a decline in Snowbed vegetation and an increase in Shrub Tundra by 2071, with temperature and nitrogen deposition being key factors driving these changes.
View Article and Find Full Text PDF

Polar and alpine environments are changing rapidly due to increases in temperature, which are amplified in the Arctic, as well as changes in many local factors. The impacts on ecosystems and their function have potential consequences for local residents and the global community. Tundra areas are vast and diverse, and the knowledge of geographical variation in environmental and ecosystem change is limited to relatively few locations, or to remote sensing approaches that are limited mostly to the past few decades.

View Article and Find Full Text PDF

Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses.

View Article and Find Full Text PDF