Publications by authors named "Patrick J Horn"

Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants.

View Article and Find Full Text PDF
Article Synopsis
  • Increasing interest in renewable energy has highlighted the importance of plant-based oilseeds, particularly those producing hydroxy fatty acids (HFAs) for industrial uses.
  • Researchers created the first draft genome of the HFA-producing plant Physaria fendleri using various sequencing methods, ensuring a thorough assembly process.
  • The resulting genome serves as a functional draft, preserving important genetic information and aiding future studies on alternative oil species.
View Article and Find Full Text PDF

Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles.

View Article and Find Full Text PDF

Using a population of recombinant inbred lines (RILs) cowpea (Vigna unguiculata. L. Walp), we tested for co-linkages between lipid contents and chilling responses of photosynthesis.

View Article and Find Full Text PDF

Cytosolic lipid droplets (LDs) are organelles which emulsify a variety of hydrophobic molecules in the aqueous cytoplasm of essentially all plant cells. Most familiar are the LDs from oilseeds or oleaginous fruits that primarily store triacylglycerols and serve a storage function. However, similar hydrophobic particles are found in cells of plant tissues that package terpenoids, sterol esters, wax esters, or other types of nonpolar lipids.

View Article and Find Full Text PDF

African Americans endure a nearly two-fold greater risk of suffering a stroke and are 2-3 times more likely to die from stroke compared to those of European ancestry. African Americans also have a greater risk of recurrent stroke and vascular events, which are deadlier and more disabling than incident stroke. Stroke is a multifactorial disease with both heritable and environmental risk factors.

View Article and Find Full Text PDF

Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1 or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t.

View Article and Find Full Text PDF

In plant lipid metabolism, the synthesis of many intermediates or end products often appears overdetermined with multiple synthesis pathways acting in parallel. Lipid metabolism is also dynamic with interorganelle transport, turnover, and remodeling of lipids. To explore this complexity in vivo, we developed an in vivo lipid 'tag and track' method.

View Article and Find Full Text PDF

Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT).

View Article and Find Full Text PDF

Rationale: Refined cottonseed oil has widespread applications in the food and chemical industries. Although the major lipids comprising cottonseed oil (triacylglycerols) are well known, there are many diverse lipid species in cotton seeds that occur at much lower levels and have important nutritional or anti-nutritional properties.

Methods: The lipid technical samples were prepared in chloroform.

View Article and Find Full Text PDF

Lipids and oils derived from plant and algal photosynthesis constitute much of human daily caloric intake and provide the basis for high-energy bioproducts, chemical feedstocks for countless applications, and even fossil fuels over geological time scales. Sustainable production of high-energy compounds from plants is essential to preserving fossil fuel sources and ensuring the well-being of future generations. As a result of progress in basic research on plant and algal lipid metabolism, in combination with advances in synthetic biology, we can now tailor plant lipids for desirable biological, physical, and chemical properties.

View Article and Find Full Text PDF

Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed.

View Article and Find Full Text PDF

In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old).

View Article and Find Full Text PDF

While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants.

View Article and Find Full Text PDF

High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.

View Article and Find Full Text PDF

Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability.

View Article and Find Full Text PDF

Using a yeast model of Parkinson's disease, we found that alpha-synuclein (αS) binds to lipid droplets in lipid-loaded, wild-type yeast cells but not to lipid droplets in lipid-loaded, peroxisome-deficient cells (pex3Δ). Our analysis revealed that pex3Δ cells have both fewer lipid droplets and smaller lipid droplets than wild-type cells, and that the acyl chains of the phospholipids on the surface of the lipid droplets from pex3Δ cells are on average shorter (C16) than those (C18) on the surface of lipid droplets from wild-type cells. We propose that the shift to shorter (C18→C16) acyl chains contributes to the reduced binding of αS to lipid droplets in pex3Δ cells.

View Article and Find Full Text PDF

Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated.

View Article and Find Full Text PDF

Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism.

View Article and Find Full Text PDF

COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals.

View Article and Find Full Text PDF

Rationale: Developments in instrumentation aimed at microscopic sampling have led to an emphasis on applications analyzing small volumes and molecular concentrations within biological, chemical, and industrial samples. Simultaneous improvements in the sensitivity and versatility of nanospray mass spectrometers have made it possible to directly couple these sampling and analysis processes.

Methods: We developed a versatile liquid-phase lipid microextraction (LPME) technique for nanoliter to microliter volumes that is amenable to direct nanospray mass spectrometry (NMS).

View Article and Find Full Text PDF

Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent.

View Article and Find Full Text PDF

Mass spectrometry (MS) advances in recent years have revolutionized the biochemical analysis of lipids in plants, and made possible new theories about the structural diversity and functional complexity of lipids in plant cells. Approaches have been developed to profile the lipidome of plants with increasing chemical and spatial resolution. Here we highlight a variety of methods for lipidomics analysis at the tissue, cellular and subcellular levels.

View Article and Find Full Text PDF