Publications by authors named "Patrick J Bolan"

The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis.

View Article and Find Full Text PDF

Objective: Quantitative parameter mapping conventionally relies on curve fitting techniques to estimate parameters from magnetic resonance image series. This study compares conventional curve fitting techniques to methods using neural networks (NN) for measuring T in the prostate.

Materials And Methods: Large physics-based synthetic datasets simulating T mapping acquisitions were generated for training NNs and for quantitative performance comparisons.

View Article and Find Full Text PDF

Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment.

View Article and Find Full Text PDF

This work seeks to evaluate multiple methods for quantitative parameter estimation from standard T mapping acquisitions in the prostate. The T estimation performance of methods based on neural networks (NN) was quantitatively compared to that of conventional curve fitting techniques. Large physics-based synthetic datasets simulating T mapping acquisitions were generated for training NNs and for quantitative performance comparisons.

View Article and Find Full Text PDF

Measurements of liver volume from MR images can be valuable for both clinical and research applications. Automated methods using convolutional neural networks have been used successfully for this using a variety of different MR image types as input. In this work, we sought to determine which types of magnetic resonance images give the best performance when used to train convolutional neural networks for liver segmentation and volumetry.

View Article and Find Full Text PDF

In diffusion-weighted MRI (DW-MRI), choice of b-value influences apparent diffusion coefficient (ADC) values by probing different aspects of the tissue microenvironment. As a secondary analysis of the multicenter ECOG-ACRIN A6698 trial, the purpose of this study was to investigate the impact of alternate b-value combinations on the performance and repeatability of tumor ADC as a predictive marker of breast cancer treatment response. The final analysis included 210 women who underwent standardized 4-b-value DW-MRI (b = 0/100/600/800 s/mm2) at multiple timepoints during neoadjuvant chemotherapy treatment and a subset (n = 71) who underwent test−retest scans.

View Article and Find Full Text PDF

Multi-zonal segmentation is a critical component of computer-aided diagnostic systems for detecting and staging prostate cancer. Previously, convolutional neural networks such as the U-Net have been used to produce fully automatic multi-zonal prostate segmentation on magnetic resonance images (MRIs) with performance comparable to human experts, but these often require large amounts of manually segmented training data to produce acceptable results. For institutions that have limited amounts of labeled MRI exams, it is not clear how much data is needed to train a segmentation model, and which training strategy should be used to maximize the value of the available data.

View Article and Find Full Text PDF

Background Suppression of background parenchymal enhancement (BPE) is commonly observed after neoadjuvant chemotherapy (NAC) at contrast-enhanced breast MRI. It was hypothesized that nonsuppressed BPE may be associated with inferior response to NAC. Purpose To investigate the relationship between lack of BPE suppression and pathologic response.

View Article and Find Full Text PDF

In vivo magnetic resonance spectroscopy (MRS) can provide clinically valuable metabolic information from brain tumors that can be used for prognosis and monitoring response to treatment. Unfortunately, this technique has not been widely adopted in clinical practice or even clinical trials due to the difficulty in acquiring and analyzing the data. In this work we propose a computational approach to solve one of the most critical technical challenges: the problem of quickly and accurately positioning an MRS volume of interest (a voxel) inside a tumor using MR images for guidance.

View Article and Find Full Text PDF
Article Synopsis
  • DWI (Diffusion-weighted imaging) has potential in breast cancer monitoring, but standard techniques often fall short in quality and resolution.
  • A study compared traditional spin-echo DWI with two advanced imaging methods (readout-segmented and axial reformatted-simultaneous multislice) to assess their effectiveness in breast imaging.
  • Results indicated that AR-SMS imaging provided significantly higher image quality and better resolution for detecting small lesions compared to the standard methods.
View Article and Find Full Text PDF

Proton MRS ( H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenge of correcting Nyquist ghosts in breast diffusion-weighted imaging (DWI) using various methods.
  • It compares the effectiveness of a standard 3-line navigator with four innovative referenceless methods for ghost correction.
  • The results demonstrate that all referenceless methods significantly outperform the standard technique across multiple tested b-values, offering a more reliable approach without extra calibration scans.
View Article and Find Full Text PDF

Background: Quantitative diffusion-weighted imaging (DWI) MRI is a promising technique for cancer characterization and treatment monitoring. Knowledge of the reproducibility of DWI metrics in breast tumors is necessary to apply DWI as a clinical biomarker.

Purpose: To evaluate the repeatability and reproducibility of breast tumor apparent diffusion coefficient (ADC) in a multi-institution clinical trial setting, using standardized DWI protocols and quality assurance (QA) procedures.

View Article and Find Full Text PDF

Purpose To determine if the change in tumor apparent diffusion coefficient (ADC) at diffusion-weighted (DW) MRI is predictive of pathologic complete response (pCR) to neoadjuvant chemotherapy for breast cancer. Materials and Methods In this prospective multicenter study, 272 consecutive women with breast cancer were enrolled at 10 institutions (from August 2012 to January 2015) and were randomized to treatment with 12 weekly doses of paclitaxel (with or without an experimental agent), followed by 12 weeks of treatment with four cycles of anthracycline. Each woman underwent breast DW MRI before treatment, at early treatment (3 weeks), at midtreatment (12 weeks), and after treatment.

View Article and Find Full Text PDF

Purpose: To estimate the accuracy of predicting response to neoadjuvant chemotherapy (NACT) in patients with locally advanced breast cancer using MR spectroscopy (MRS) measurements made very early in treatment.

Materials And Methods: This prospective Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol was approved by the American College of Radiology and local-site institutional review boards. One hundred nineteen women with invasive breast cancer of ≥3 cm undergoing NACT were enrolled between September 2007 and April 2010.

View Article and Find Full Text PDF

Background: Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity.

View Article and Find Full Text PDF

Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment.

View Article and Find Full Text PDF

Purpose: The marrow composition throughout the body is heterogeneous and changes with age. Due to heterogeneity, invasive biopsies of the iliac crest do not truly represent the complete physiological status, impeding the clinical effectiveness of this method. Therefore, we aim to provide verification for an in vivo imaging technique using co-registered histologic examinations for assessment of marrow adiposity.

View Article and Find Full Text PDF

As developments in RF coils and RF management strategies make performing ultra-high-field renal imaging feasible, understanding the relaxation times of the tissue becomes increasingly important for tissue characterization, sequence optimization and quantitative functional renal imaging, such as renal perfusion imaging using arterial spin labeling. By using a magnetization-prepared single-breath-hold fast spin echo imaging method, human renal T1 and T2 imaging studies were successfully performed at 7 T with 11 healthy volunteers (eight males, 45 ± 17 years, and three females, 29 ± 7 years, mean ± standard deviation, S.D.

View Article and Find Full Text PDF

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system.

View Article and Find Full Text PDF

In vivo magnetic resonance spectroscopy (MRS) of the breast can be used to measure the level of choline-containing compounds, which is a biomarker of malignancy. In the diagnostic setting, MRS can provide high specificity for distinguishing benign from malignant lesions. MRS also can be used as an early response indicator in patients undergoing neoadjuvant chemotherapy.

View Article and Find Full Text PDF

Purpose: To identify parameters associated with ovarian malignancy using multiparametric quantitative magnetic resonance imaging (MRI).

Materials And Methods: After Institutional Review Board (IRB) approval, women with ovarian masses underwent preoperative imaging with 3 T MRI. Dynamic contrast-enhanced (DCE)-MRI with pharmacokinetic modeling, quantitative T2 mapping, and diffusion-weighted imaging with quantitative mapping of the water diffusion parameters were performed.

View Article and Find Full Text PDF

Purpose: To assess the feasibility of using fat-fraction imaging for measuring marrow composition changes over large regions in patients undergoing cancer therapy.

Materials And Methods: Thirteen women with gynecologic malignancies who were to receive radiation and/or chemotherapy were recruited for this study. Subjects were imaged on a 3T magnetic resonance (MR) scanner at baseline (after surgery but before radiation or chemotherapy), 6 months, and 12 months after treatment.

View Article and Find Full Text PDF

Purpose: To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI).

Materials And Methods: The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min).

View Article and Find Full Text PDF