Publications by authors named "Patrick Igel"

Article Synopsis
  • This study introduces a new radioligand, [H]UR-MN259, designed for better performance in targeting histamine H receptors (HR) compared to previous options.
  • The new radioligand has high stability, great chemical purity, and a very strong affinity for HR (p(HR) = 9.56) with impressive selectivity over other histamine receptors (over 100,000-fold).
  • [H]UR-MN259 allows for effective competition binding tests and demonstrates rapid binding and release from the receptor, making it a valuable tool for researching HR's functions in the central nervous system (CNS).
View Article and Find Full Text PDF

The four functionally expressed human neuropeptide Y receptor subtypes (hY(1)R, hY(2)R, hY(4)R, hY(5)R) belong to class A of the G-protein-coupled receptors (GPCRs) and interact with pertussis toxin-sensitive G(i/o)-proteins. The number of small molecules described as ligands for hY(1)R and hY(5)R exceeds by far those for hY(2)R. Potent non-peptidergic ligands for the hY(4)R are not available so far.

View Article and Find Full Text PDF

The histamine H₄ receptor (H₄R) is expressed on cells of the immune system including eosinophils, dendritic cells, and T cells and plays an important role in the pathogenesis of bronchial asthma, atopic dermatitis, and pruritus. Analysis of the H₄R in these diseases depends on the use of animal models. However, there are substantial pharmacological differences between various H₄R species orthologs.

View Article and Find Full Text PDF

Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity.

View Article and Find Full Text PDF

Guanidine and acylguanidine groups are crucial structural features of numerous biologically active compounds. Depending on the biological target, acylguanidines may be considered as considerably less basic bioisosteres of guanidines with improved pharmacokinetics and pharmacodynamics, as recently reported for N'-monoalkylated N-acylguanidines as ligands of G-protein-coupled receptors (GPCRs). The molecular basis for enhanced ligand-receptor interactions of acylguanidines is far from being understood.

View Article and Find Full Text PDF

Recently, we identified high-affinity human histamine H3 (hH3R) and H4 receptor (hH4R) ligands among a series of NG-acylated imidazolylpropylguanidines, which were originally designed as histamine H2 receptor (H2R) agonists. Aiming at selectivity for hH4R, the acylguanidine group was replaced with related moieties. Within a series of cyanoguanidines, 2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine (UR-PI376, 67) was identified as the most potent hH4R agonist (pEC50 = 7.

View Article and Find Full Text PDF

3-(1H-Imidazol-4-yl)propylguanidine (SK&F 91486, 4) was identified as a potent partial agonist at the human histamine H(3) receptor (hH(3)R) and human histamine H(4) receptor (hH(4)R). With the aim to increase selectivity for the hH(4)R, the guanidine group in 4 was acylated. N(1)-Acetyl-N(2)-[3-(1H-imidazol-4-yl)propyl]guanidine (UR-PI288, 13) was a potent full agonist at the hH(4)R (pEC(50) = 8.

View Article and Find Full Text PDF

This study reports the synthesis and pharmacological characterization of tritium-labeled N(1)-[3-(1H-imidazol-4-yl)propyl]-N(2)-propionylguanidine ([(3)H]UR-PI294), a novel and readily accessible radioligand for the human histamine H(3) receptor (hH(3)R) and H(4) receptor (hH(4)R). The radioligand displays high affinity for both histamine receptor subtypes (K(D) (hH(3)R)=1.1 nM, K(D) (hH(4)R)=5.

View Article and Find Full Text PDF

N1-Aryl(heteroaryl)alkyl-N2-[3-(1H-imidazol-4-yl)propyl]guanidines are potent histamine H2-receptor (H2R) agonists, but their applicability is compromised by the lack of oral bioavailability and CNS penetration. To improve pharmacokinetics, we introduced carbonyl instead of methylene adjacent to the guanidine moiety, decreasing the basicity of the novel H2R agonists by 4-5 orders of magnitude. Some acylguanidines with one phenyl ring were even more potent than their diaryl analogues.

View Article and Find Full Text PDF