Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput.
View Article and Find Full Text PDFTerminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA with random nucleotides. TdT's DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants in high throughput.
View Article and Find Full Text PDFWe describe an approach for the development of fluorescent sensors of metabolite binding in which a genetically encoded fluorescent non-canonical amino acid (fNCAA) containing a 7-hydroxycoumarin moiety (7-HCAA) forms a FRET pair with native tryptophan residues. Although previous studies demonstrated the potential for using 7-HCAA as an acceptor for tryptophan, this approach has not yet been explored within a single protein containing multiple tryptophan residues. A structure-based analysis of a hexokinase enzyme with multiple native tryptophan residues identified glutamate 50 as a potential site of 7-HCAA incorporation; Glu50 moves closer to the native tryptophans upon substrate binding.
View Article and Find Full Text PDF