We perform molecular dynamics simulations for viscous liquids to study the relations between dynamical heterogeneity, structural (α) relaxation, and self-diffusion. For atomistic models of supercooled water, polymer melts, and an ionic liquid, we characterize the space-time characteristics of dynamical heterogeneity by the degree of deviations from Gaussian displacement statistics (α2), the size of clusters comprising highly mobile particles (S(w)), and the length of strings consisting of cooperatively moving particles (L(w)). Comparison of our findings with previous simulation results for a large variety of viscous liquids, ranging from monoatomic liquids to silica melt, reveals a nearly universal decoupling between the time scales of maximum non-Gaussian parameter (τ(α2)) and the time constant of the α relaxation (τ(α)) upon cooling, explicitly, τ(α2) ∝τ(α)(3/4).
View Article and Find Full Text PDFWe demonstrate that molecular dynamics simulations are a versatile tool to ascertain the interpretation of spin-lattice relaxation data. For (1)H, our simulation approach allows us to separate and to compare intra- and inter-molecular contributions to spin-lattice relaxation dispersions. Dealing with the important example of polymer melts, we show that the intramolecular parts of (1)H spectral densities and correlation functions are governed by rotational motion, while their inter-molecular counterparts provide access to translational motion, in particular, to mean-squared displacements and self-diffusion coefficients.
View Article and Find Full Text PDF