Publications by authors named "Patrick H Warnke"

Background: Medication-related osteonecrosis of the jaw (MRONJ) is clinically defined as a non-healing jawbone ulcerative-necrotic lesion appearing after dental therapy or minor trauma in patients treated previously with anti-resorptive, anti-angiogenic or immunomodulators. Older patients with osteoporosis and cancer receive these pharmacological agents regularly. As these patients are long-term survivors, efficient treatment is of paramount importance for their quality of life.

View Article and Find Full Text PDF

There is an urgent need for ultrarapid testing regimens to detect the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate, and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread.

View Article and Find Full Text PDF

Purpose: Molecular markers are only occasionally used in diagnostics of oral squamous cell carcinoma (OSCC), even though they could influence decision making in individually designed cancer therapies. We analyzed the predictive value of the markers HPV, p16, and HMGA2 and the TNM classification in regard to survival and recurrence rates.

Material And Methods: A total of 91 OSCC cases were included in this study, with a follow up of up to 131 months.

View Article and Find Full Text PDF

Musculoskeletal defects attributable to trauma or infection or as a result of oncologic surgery present a common challenge in reconstructive maxillofacial surgery. The autologous vascularized bone graft still represents the gold standard for salvaging these situations. Preoperative virtual planning offers great potential and provides assistance in reconstructive surgery.

View Article and Find Full Text PDF

The timing of application of recombinant human bone morphogenic protein-2 (rhBMP-2) may be important in determining the final outcome of engineered bone tissue. This study investigates the impact of repetitive rhBMP-2 application on hard and soft tissue morphology in endocultivation. A 3D-printed scaffold was implanted into a pouch in the latissimus dorsi muscle in 40 Lewis rats.

View Article and Find Full Text PDF

Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only.

View Article and Find Full Text PDF

Engineering a large vascularized bone graft is a much greater challenge than engineering small bone tissues. Although this is essentially feasible through an osteogenic factor-based in vivo bioreactor technique, the ossification needs improving. This study was aimed to investigate the possibility and efficacy of ectopic cultivation of sizeable bone grafts with large angiogenic and osteogenic factor-loaded natural bovine bone mineral (NBBM) scaffolds.

View Article and Find Full Text PDF

Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM.

View Article and Find Full Text PDF

Purpose: Artificial materials such as dental implants are at risk of bacterial contamination in the oral cavity. Human beta defensins (HBDs), small cationic antimicrobial peptides that exert a broad-spectrum antibacterial function at epithelial surfaces and within some mesenchymal tissues, could probably help to reduce such contamination. HBDs also have protective immunomodulatory effects and have been reported to promote bone remodeling.

View Article and Find Full Text PDF

Background: A major focus of the medical school curriculum is to ensure medical students are well prepared prior to entering clinical rotations, which includes the compulsory surgical rotation.

Aims: The objective of this research was to design and formally evaluate a set of real-life surgical workshops aimed at better preparing medical students for their clinical rotation in surgery. These workshops would be incorporated into the pre-clinical medical school curriculum.

View Article and Find Full Text PDF

The fight against hospital-acquired infections involving antibiotic-resistant microorganisms has become of critical concern to surgeons worldwide. In addition to the development of new effective antibiotic chemotherapy, exploration of 'forgotten' topical antibacterial agents from the pre-antibiotic era has recently gained new attention. We report the promising efficacy of plant-derived antiseptic oils used in traditional aboriginal and south-east Asian treatments such as Lemongrass, Eucalyptus and Tea Tree Oil in the inhibition of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), multi-resistant Pseudomonas aeruginosa, ESBL-producing Escherichia coli and Klebsiella pneumoniae in the in-vitro setting.

View Article and Find Full Text PDF

Novel clinical grade electrospinning methods could provide three-dimensional (3D) nanostructured biomaterials comprising of synthetic or natural biopolymer nanofibers. Such advanced materials could potentially mimic the natural extracellular matrix (ECM) accurately and may provide superior niche-like spaces on the subcellular scale for optimal stem-cell attachment and individual cell homing in regenerative therapies. The goal of this study was to design several novel "nanofibrous extracellular matrices" (NF-ECMs) with a natural mesh-like 3D architecture through a unique needle-free multi-jet electrospinning method in highly controlled manner to comply with good manufacturing practices (GMP) for the production of advanced healthcare materials for regenerative medicine, and to test cellular behavior of human mesenchymal stem cells (HMSCs) on these.

View Article and Find Full Text PDF

Aim: Biomaterials that mimic the nanofibrous architecture of the natural extracellular matrix (ECM) are in the focus for stem cell hosting or delivery in tissue engineering of multilayered soft tissues such as skin, mucosa, or retina. Synthetic nanofibers for such ECM are usually produced by single-syringe electrospinning with only one needle-jet at very low production rates of 0.005-0.

View Article and Find Full Text PDF

The transplantation of human stem cells seeded on biomaterials holds promise for many clinical applications in cranio-maxillo-facial tissue engineering and regenerative medicine. However, stem cell propagation necessary to produce sufficient cell numbers currently utilizes fetal calf serum (FCS) as a growth supplement which may subsequently transmit animal pathogens. Human platelet lysate (HPL) could potentially be utilized to produce clinical-grade stem cell-loaded biomaterials as an appropriate FCS substitute that is in line with clinically-applicable practice.

View Article and Find Full Text PDF

Background: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering.

Methods: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.

View Article and Find Full Text PDF

Purpose: Human mesenchymal stem cells (hMSCs) hold the potential for bone regeneration because of their self-renewing and multipotent character. The goal of this study was to evaluate the influence of collagen membranes on the proliferation of hMSCs derived from bone marrow. A special focus was set on short-term eluates derived from collagen membranes, as volatile toxic materials washed out from these membranes may influence cell behavior during the short time course of oral surgery.

View Article and Find Full Text PDF

Introduction: Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application.

View Article and Find Full Text PDF

Background: A promising strategy to prevent infections around orthopaedic titanium implants is to use naturally occurring cationic antimicrobial peptides (CAMPs) such as the human β-defensin-2 as antibacterial coatings. Human antimicrobial peptides represent a part of the innate immune system and have a broad antimicrobial spectrum against bacteria, fungi, and viruses.

Methods: In the present study, titanium surfaces were functionalized by four different self-assembled monolayers (SAMs) forming methoxy silanes: (1) hexadecyltrimethoxysilane, (2) dimethoxymethyloctylsilane, (3) allyltrimethylsilane, and (4) 3-aminopropyltrimethoxysilane.

View Article and Find Full Text PDF

Purpose: For larger augmentations before implant insertions, as well as spinal arthrodesis surgery, the iliac crest is the standard source of bone grafting. This study assesses iliac morbidity after bone graft harvesting from the anterior and posterior ilium.

Materials And Methods: A total of 97 patients who underwent corticocancellous iliac crest bone harvesting for augmentations of the jaws from 2004 to 2007 at the Department of Oral and Maxillofacial Surgery, University Hospital Kiel, Kiel, Germany, were included.

View Article and Find Full Text PDF

The impaired temporomandibular joint might be the first to benefit from applied tissue engineering techniques because it is small and tissue growth in larger amounts is challenging. Bone and cartilage require different competing environmental conditions to be cultivated in vitro. But coupling both the osteogenic and cartilaginous pathways of mesenchymal stem cell differentiation in homeostasis will be a key essential to grow osteochondral constructs or even the first biological joint replacement in the future.

View Article and Find Full Text PDF

Introduction: Bisphosphonates (BPs) are powerful drugs that inhibit bone metabolism. Adverse side effects are rare but potentially severe such as bisphosphonate-related osteonecrosis of the jaw (BRONJ). To date, research has primarily focused on the development and progression of BRONJ in cancer patients with bone metastasis, who have received high dosages of BPs intravenously.

View Article and Find Full Text PDF

Objectives: Platelet-rich fibrin (PRF)-based membranes have been used for covering alveolar ridge augmentation side in several in vivo studies. Few in vitro studies on PRF and no studies using human periosteal cells for tissue engineering have been published. The aim is a comparison of PRF with the commonly used collagen membrane Bio-Gide as scaffolds for periosteal tissue engineering.

View Article and Find Full Text PDF

Unlabelled: The aim of this study was to evaluate and compare the biocompatibility of computer-assisted designed (CAD) synthetic hydroxyapatite (HA) and tricalciumphosphate (TCP) blocks and natural bovine hydroxyapatite blocks for augmentations and endocultivation by supporting and promoting the proliferation of human periosteal cells. Human periosteum cells were cultured using an osteogenic medium consisting of Dulbecco's modified Eagle medium supplemented with fetal calf serum, Penicillin, Streptomycin and ascorbic acid at 37 degrees C with 5% CO(2). Three scaffolds were tested: 3D-printed HA, 3D-printed TCP and bovine HA.

View Article and Find Full Text PDF

Aim: As the treatment of peri-implantitis-induced bone loss is still a problem, we studied the regenerative treatment of these defects with a mix of autologous bone and a new type of bone graft substitute (demineralized xenogenic bone graft) including growth factors.

Material And Methods: In a prospective manner, 36 cases of peri-implantitis-induced bone loss (depth >4 mm) in 22 patients were followed for 1 year. After resolving the acute infection by local rinsing, granulation tissue was removed.

View Article and Find Full Text PDF