Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.
Procedures: Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation.
Background: Sentinel lymph node biopsy (SLNB) is an important cancer diagnostic staging procedure. Conventional SLNB procedures with Tc radiotracers and scintigraphy are constrained by tracer half-life and, in some cases, insufficient image resolution. Here, we explore an alternative magnetic (nonradioactive) image-guided SLNB procedure.
View Article and Find Full Text PDFMagnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after delivery.
View Article and Find Full Text PDFPurpose: Magnetic particle hyperthermia is an approved cancer treatment that harnesses thermal energy generated by magnetic nanoparticles when they are exposed to an alternating magnetic field (AMF). Thermal stress is either directly cytotoxic or increases the susceptibility of cancer cells to standard therapies, such as radiation. As with other thermal therapies, the challenge with nanoparticle hyperthermia is controlling energy delivery.
View Article and Find Full Text PDFThis paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
May 2022
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat-based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry.
View Article and Find Full Text PDFThe scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace.
View Article and Find Full Text PDFMagnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is a promising new tracer-based imaging modality. The steady-state, nonlinear magnetization physics most fundamental to MPI typically predicts improving resolution with increasing tracer magnetic core size. For larger tracers, and given typical excitation slew rates, this steady-state prediction is compromised by dynamic processes that induce a significant secondary blur and prevent us from achieving high resolution using larger tracers.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2018
Magnetic Particle Imaging (MPI), a molecular imaging modality that images biocompatible superparamagnetic iron oxide tracers, is well-suited for clinical angiography, in vivo cell tracking, cancer detection, and inflammation imaging. MPI is sensitive and quantitative to tracer concentration, with a positive contrast that is not attenuated or corrupted by tissue background. Like other clinical imaging techniques, such as computed tomography, magnetic resonance imaging, and nuclear medicine, MPI can be modeled as a linear and shift-invariant system with a well-defined point spread function (PSF) capturing the system blur.
View Article and Find Full Text PDFMagnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location.
View Article and Find Full Text PDFBackground: Islet transplantation (Tx) represents the most promising therapy to restore normoglycemia in type 1 diabetes (T1D) patients to date. As significant islet loss has been observed after the procedure, there is an urgent need for developing strategies for monitoring transplanted islet grafts. In this report we describe for the first time the application of magnetic particle imaging (MPI) for monitoring transplanted islets in the liver and under the kidney capsule in experimental animals.
View Article and Find Full Text PDFImage-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations.
View Article and Find Full Text PDFGastrointestinal (GI) bleeding causes more than 300 000 hospitalizations per year in the United States. Imaging plays a crucial role in accurately locating the source of the bleed for timely intervention. Magnetic particle imaging (MPI) is an emerging clinically translatable imaging modality that images superparamagnetic iron-oxide (SPIO) tracers with extraordinary contrast and sensitivity.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2017
Inductive sensor-based measurement techniques are useful for a wide range of biomedical applications. However, optimizing the noise performance of these sensors is challenging at broadband frequencies, owing to the frequency-dependent reactance of the sensor. In this work, we describe the fundamental limits of noise performance and bandwidth for these sensors in combination with a low-noise amplifier.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques-but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique.
View Article and Find Full Text PDFEmergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries.
View Article and Find Full Text PDFPulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE.
View Article and Find Full Text PDFCancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI's utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is a rapidly developing molecular and cellular imaging modality. Magnetic fluid hyperthermia (MFH) is a promising therapeutic approach where magnetic nanoparticles are used as a conduit for targeted energy deposition, such as in hyperthermia induction and drug delivery. The physics germane to and exploited by MPI and MFH are similar, and the same particles can be used effectively for both.
View Article and Find Full Text PDFMagnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applications such as angiography and brain perfusion. Although MPI resolution is highly dependent on tracer characteristics and the drive waveforms, optimization is limited to a small subset of possible excitation strategies by current MPI hardware that only does sinusoidal drive waveforms at very few frequencies.
View Article and Find Full Text PDFStem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge.
View Article and Find Full Text PDFPurpose: Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution.
View Article and Find Full Text PDF