Publications by authors named "Patrick Gane"

Of major interest, especially in city environments, and increasingly inside vehicles or industrial plants, is the drive to reduce human exposure to nitrogen oxides (NO). This trend has drawn increasing attention to filtration, which has developed remarkably owing to the capabilities of recently developed mathematical models and novel filter concepts. This paper reports on the study of the kinetic modelling of adsorption of nitrogen dioxide (NO), collected from the tailpipe of a diesel engine, reacting to calcium nitrate salt (Ca(NO)) on a surface flow filter consisting of a coating of fine ground limestone or marble (CaCO) in combination with micro-nanofibrillated cellulose (MNFC) acting as binder and humectant applied onto a multiply recycled newsprint substrate.

View Article and Find Full Text PDF

Strongly attractive forces act between superhydrophobic surfaces across water due to the formation of a bridging gas capillary. Upon separation, the attraction can range up to tens of micrometers as the gas capillary grows, while gas molecules accumulate in the capillary. We argue that most of these molecules come from the pre-existing gaseous layer found at and within the superhydrophobic coating.

View Article and Find Full Text PDF

A fundamental understanding of the interactions between mineral surfaces and amphiphilic surface modification agents is needed for better control over the production and uses of mineral fillers. Here, we controlled the carboxylic acid layer formation conditions on calcite surfaces with high precision via vapor deposition. The properties of the resulting carboxylic acid layers were analyzed using surface-sensitive techniques, such as atomic force microscopy (AFM), contact angle measurements, angle resolved X-ray photoelectron spectroscopy (XPS), and vibrational sum-frequency spectroscopy.

View Article and Find Full Text PDF

Ionic liquid 1-butyl-3-methylimidazolium chloride [BMIM][Cl] was used to prepare cellulose (CELL), cellulose/polycaprolactone (CELL/PCL), cellulose/polycaprolactone/keratin (CELL/PCL/KER), and cellulose/polycaprolactone/keratin/ground calcium carbonate (CELL/PCL/KER/GCC) biodegradable mulch films. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) spectroscopy, optical microscopy, and Field-Emission Scanning Electron Microscopy (FE-SEM) were used to verify the films' surface chemistry and morphology. Mulch film made of only cellulose regenerated from ionic liquid solution exhibited the highest tensile strength (75.

View Article and Find Full Text PDF

The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids.

View Article and Find Full Text PDF

Unlike established coating formulations, functional particulate coatings often demand the omission of polymer dispersant so as to retain surface functionality. This results in heterogeneous complex rheology. We take an example from a novel development for an NO mitigation surface flow filter system, in which ground calcium carbonate (GCC), applied in a coating, reacts with NO releasing CO.

View Article and Find Full Text PDF

Flexible and easy-to-use microfluidic systems are suitable options for point-of-care diagnostics. Here, we investigate liquid transport in fluidic channels produced by stencil printing on flexible substrates as a reproducible and scalable option for diagnostics and paper-based sensing. Optimal printability and flow profiles were obtained by combining minerals with cellulose fibrils of two different characteristic dimensions, in the nano- and microscales, forming channels with ideal wettability.

View Article and Find Full Text PDF

A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation.

View Article and Find Full Text PDF

In this work, we examine two modifications of fine-ground calcium carbonate material (GCC) in order to enhanced sorption of NO and subsequent reaction properties toward NO/NO formation by firstly exposing the GCC to supercritical (sc) CO in order to increase particle surface area, a choice specifically made to avoid altering the surface chemistry, and secondly considering the potential advantage of using a surface coupling agent toward NO. The modification by the coupling agent amino silane (AMEO silane) was applied in a supercritical CO-ethanol mixture. The samples were characterised before and after modification by field emission scanning electron microscopy (FESEM), specific surface area determination (BET nitrogen adsorption), ATR-FTIR spectroscopy and ion chromatography to reveal the effects of the surface modification(s) on the morphology, surface textural properties and sorption versus reaction properties with NO.

View Article and Find Full Text PDF

Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface.

View Article and Find Full Text PDF

The surface of cellulose films, obtained from micro nanofibrillated cellulose produced with different enzymatic pretreatment digestion times of refined pulp, was exposed to gas plasma, resulting in a range of surface chemical and morphological changes affecting the mechanical and surface interactional properties. The action of separate and dual exposure to oxygen and nitrogen cold dielectric barrier discharge plasma was studied with respect to the generation of roughness (confocal laser and atomic force microscopy), nanostructural and chemical changes on the cellulose film surface, and their combined effect on wettability. Elemental analysis showed that with longer enzymatic pretreatment time the wetting response was sensitive to the chemical and morphological changes induced by both plasma gases, but distinctly oxygen plasma was seen to induce much greater morphological change while nitrogen plasma contributed more to chemical modification of the film surface.

View Article and Find Full Text PDF

The rheological behavior of aqueous suspensions of lignocellulose nanofibrils (LCNFs) is investigated systematically by considering the coupled effect of residual lignin and LCNF morphology. The LCNF was obtained by high-energy fluidization of TEMPO-oxidized mechanical fibers, followed by size fractionation (fibril widths of ∼5, ∼9, and ∼18 nm). The nanofibril width and the corresponding fibril-fibril interactions are strongly influenced by the presence and distribution of lignin in the respective fractions, either retained on the fibril surface or as free structures present in the finest size fraction.

View Article and Find Full Text PDF

In previous investigations, it was found that the thermal properties of a polyamide 12 compound can be manipulated, using a designed filler, to improve the melting as well as crystallization behavior, determined for selective laser sintering. A common downside of the introduction of a non-flexing mineral filler is the reduction of the mechanical properties, such as ductility. This paper investigates the influence of content and surface modification of limestone on the mechanical properties.

View Article and Find Full Text PDF

Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium.

View Article and Find Full Text PDF

Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols.

View Article and Find Full Text PDF

In this study, we present willow wood as a new low-cost, renewable, and sustainable biomass source for the production of a highly porous activated carbon for application in energy storage devices. The obtained activated carbon showed favorable features required for excellent electrochemical performance such as high surface area (∼2 800 m g) and pore volume (1.45 cm g), with coexistence of micropores and mesopores.

View Article and Find Full Text PDF

Superhydrophobic surfaces in the Cassie-Baxter wetting state retain an air layer at the surface which prevents liquid water from reaching into the porous surface structure. In this work we explore how addition of ethanol, which reduces the surface tension, influences the wetting properties of superhydrophobic and smooth hydrophobic surfaces. Wetting properties are measured by dynamic contact angles, and the air layer at the superhydrophobic surface is visualized by laser scanning confocal microscopy.

View Article and Find Full Text PDF

The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 μm.

View Article and Find Full Text PDF

Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28 h) at controlled humidity (≤3-95 %RH) and temperature (25.

View Article and Find Full Text PDF

Propofol is an amphiphilic small molecule that strongly influences the function of cell membranes, yet data regarding interfacial properties of propofol remain scarce. Here we consider propofol adsorption at the air/water interface as elucidated by means of vibrational sum frequency spectroscopy (VSFS), neutron reflectometry (NR), and surface tensiometry. VSFS data show that propofol adsorbed at the air/water interface interacts with water strongly in terms of hydrogen bonding and weakly in the proximity of the hydrocarbon parts of the molecule.

View Article and Find Full Text PDF

In this work, stability of dispersions and foams containing CaCO₃-based pigments and cellulose nanofibrils (CNF) was evaluated with the aim to reveal the mechanisms contributing to the overall stability of the selected systems. The utmost interest lies in the recently developed hydrocolloid hybrid CaCO₃ pigments and their potential to form bionanocomposite structures when incorporated with CNF. These pigments possess a polyelectrolyte layer deposited on the surface of the particle which is expected to enhance the compatibility between inorganic and organic components.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists combined two cool materials, graphene and micro-nanofibrillated cellulose (MNFC), to create stronger and more useful films.
  • They used a special method to mix them together, making sure the graphene was evenly spread without any extra chemicals.
  • The new films were better in many ways: they were tougher, could conduct electricity well, and could be made from renewable resources, which is good for the environment!*
View Article and Find Full Text PDF

Vibrational sum frequency spectroscopy (VSFS) complemented by surface pressure isotherm and neutron reflectometry (NR) experiments were employed to investigate the interactions between propofol, a small amphiphilic molecule that currently is the most common general anaesthetic drug, and phospholipid monolayers. A series of biologically relevant saturated phospholipids of varying chain length from C to C were spread on either pure water or propofol (2,6-bis(1-methylethyl)phenol) solution in a Langmuir trough, and the change in the molecular structure of the film, induced by the interaction with propofol, was studied with respect to the surface pressure. The results from the surface pressure isotherm experiments revealed that propofol, as long as it remains at the interface, enhances the fluidity of the phospholipid monolayer.

View Article and Find Full Text PDF

Heckel analysis is a widely used method for the characterisation of the compression behaviour of pharmaceutical samples during the preparation of solid dosage formulations. The present study introduces an optical version of the Heckel equation that is based on a combination of the conventional Heckel equation together with the linear relationship defined between the effective terahertz (THz) refractive index and the porosity of pharmaceutical tablets. The proposed optical Heckel equation allows us to, firstly, calculate the zero-porosity refractive index, and, secondly, predict the in-die development of the effective refractive index as a function of the compressive pressure during tablet compression.

View Article and Find Full Text PDF

Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process.

View Article and Find Full Text PDF