J Chromatogr B Analyt Technol Biomed Life Sci
June 2019
A rapid and sensitive liquid chromatography-mass spectrometry assay was developed and used to quantify emetic cereulide peptide exotoxin, which can be related to possible Bacillus cereus contamination in monoclonal antibody (mAb) bioprocess feeds. The assay limit of detection was 0.05 ng/mL (~1 fmol injected) and limit of quantification 0.
View Article and Find Full Text PDFSimethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
June 2014
Product lifecycle management refers to the oversight process and activities carried out to fully realize the commercial potential and value of a product in the marketplace. It is typical for many changes to be introduced to the production processes and testing methods for biopharmaceutical drugs over their lifetime in the commercial marketplace. Technology lifecycle management, as discussed here, refers to the management of the different phases or generations of processes and methods used to make and test the active biopharmaceutical ingredient or drug product, and the adoption of different devices used to present the drug product to patients.
View Article and Find Full Text PDFBackground: Radical prostatectomy cures the majority of men with clinically localized disease, but up to 30% of men relapse with rising serum PSA levels. Stage, Gleason grade, and pre-operative PSA levels are associated with outcome but do not accurately predict which individuals will relapse. MicroRNA (miRNA) levels are altered in cancer and are associated with progression of disease.
View Article and Find Full Text PDFWeighted gene coexpression network analysis (WGCNA) was utilised to explore Chinese hamster ovary (CHO) cell transcriptome patterns associated with bioprocess relevant phenotypes. The dataset set used in this study consisted of 295 microarrays from 121 individual CHO cultures producing a range of biologics including monoclonal antibodies, fusion proteins and therapeutic factors; non-producing cell lines were also included. Samples were taken from a wide range of process scales and formats that varied in terms of seeding density, temperature, medium, feed medium, culture duration and product type.
View Article and Find Full Text PDFBackground: The ability of mammalian cell lines to sustain cell specific productivity (Qp) over the full duration of bioprocess culture is a highly desirable phenotype, but the molecular basis for sustainable productivity has not been previously investigated in detail. In order to identify proteins that may be associated with a sustained productivity phenotype, we have conducted a proteomic profiling analysis of two matched pairs of monoclonal antibody-producing Chinese hamster ovary (CHO) cell lines that differ in their ability to sustain productivity over a 10 day fed-batch culture.
Results: Proteomic profiling of inherent differences between the two sets of comparators using 2D-DIGE (Difference Gel Electrophoresis) and LC-MS/MS resulted in the identification of 89 distinct differentially expressed proteins.
Improving the rate of recombinant protein production in Chinese hamster ovary (CHO) cells is an important consideration in controlling the cost of biopharmaceuticals. We present the first predictive model of productivity in CHO bioprocess culture based on gene expression profiles. The dataset used to construct the model consisted of transcriptomic data from 70 stationary phase, temperature-shifted CHO production cell line samples, for which the cell-specific productivity had been determined.
View Article and Find Full Text PDFA high rate of cell growth (micro) leading to rapid accumulation of viable biomass is a desirable phenotype during scale up operations and the early stages of production cultures. In order to identify genes and proteins that contribute to higher growth rates in Chinese hamster ovary (CHO) cells, a combined approach using microarray and proteomic expression profiling analysis was carried out on two matched pairs of CHO production cell lines that displayed either fast or slow growth rates. Statistical analysis of the microarray and proteomic data separately resulted in the identification of 118 gene transcripts and 58 proteins that were differentially expressed between the fast- and slow-growing cells.
View Article and Find Full Text PDFThe relatively recent discovery of miRNAs has added a completely new dimension to the study of the regulation of gene expression. The mechanism of action of miRNAs, the conservation between diverse species and the fact that each miRNA can regulate a number of targets and phenotypes clearly indicates the importance of these molecules. In this review the current state of knowledge relating to miRNA expression and gene regulation is presented, outlining the key morphological and biochemical features controlled by miRNAs with particular emphasis on the key phenotypes that impact on cell growth in bioreactors, namely proliferation and apoptosis.
View Article and Find Full Text PDFChinese Hamster Ovary cells are the primary system for the production of recombinant proteins for therapeutic use. Protein productivity is directly proportional to viable biomass, viability and culture longevity of the producer cells and a number of approaches have been taken to optimise these parameters. Cell cycle arrest, particularly in G1 phase, typically using reduced temperature cultivation and nutritional control have been used to enhance productivity in production cultures by prolonging the production phase, but the mechanism by which these approaches work is still not fully understood.
View Article and Find Full Text PDFAutoimmune destruction of beta cells in the pancreas leads to type I, or insulin dependent diabetes mellitus (IDDM), through the loss of endogenous insulin production capacity. This paper describes an attempt to generate 'artificial'beta cells using the fibroblast cell line BHK21. Stable transfectants expressing the human preproinsulin (PPI) gene were isolated and characterised.
View Article and Find Full Text PDFDeltaFerrin(TM), a yeast-derived recombinant human transferrin produced by Delta Biotechnology Ltd. (Nottingham UK), was found to be a suitable replacement for holo human transferrin in serum-free culture media of the MDCK cell line (chosen because of its transferrin dependence) in short-term screening assays. Long-term subculture was achieved with DeltaFerrin(TM) supporting growth equivalent to that of holo human transferrin.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cells are widely used for the production of recombinant protein biopharmaceuticals. The purpose of this study was to investigate differences in the proteome of CHO DUKX cells expressing recombinant human bone morphogenetic protein-2 (rhBMP-2) (G5 cells) compared to cells also expressing soluble exogenous paired basic amino acid cleaving enzyme soluble paired basic amino acid cleaving enzyme (PACEsol) (3C9 cells), which has been previously found to improve the post-translational processing of the mature rhBMP-2 dimer. PACEsol co-expression was also associated with a significant increase (almost four-fold) in cellular productivity of rhBMP-2 protein.
View Article and Find Full Text PDFBackground: Previous studies, by ourselves and others, have indicated that gene transcripts are detectable extracellularly. Advancing on this work, in order to investigate the feasibility of analysing global gene expression profiles and so the possibility in the future of identifying panels of circulating mRNA biomarkers that may be diagnostic, prognostic or predictive for cancer, here we performed the first whole genome microarray analysis of human serum.
Patients And Methods: RNA was isolated from pre-surgery serum and corresponding breast tumour and normal tissue biopsies, and from post-surgery and normal control serum.
Background: To ensure maximal productivity of recombinant proteins (rP) during production culture it is typical to encourage an initial phase of rapid cell proliferation to achieve high biomass followed by a stationary phase where cellular energies are directed towards production of rP. During many such biphasic cultures, the initial phase of rapid cell growth at 37 degrees C is followed by a growth arrest phase induced through reduction of the culture temperature. Low temperature induced growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase, although the mechanisms regulating these phenotypes during mild hypothermia are poorly understood.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry for the production of recombinant human proteins including complex polypeptides such as recombinant human bone morphogenic protein 2 (rhBMP-2). Large-scale manufacture of rhBMP-2 has associated production difficulties resulting from incomplete processing of the recombinant human protein due to insufficient endogenous levels of the paired basic amino acid cleaving enzyme (PACE) in CHO. In order to resolve this issue, CHO DUKX cells expressing rhBMP-2 were transfected with the soluble version of human PACE (PACEsol) resulting in improved amino-terminal homogeneity and a fourfold increase in rhBMP-2 productivity.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cells are the most commonly used host cell line for the production of recombinant biopharmaceuticals. These biopharmaceuticals are typically secreted from CHO cells and purified from harvested cell culture media. The purpose of this study was to investigate changes in the secreted proteome of CHO cells over the various stages of the growth cycle using Surface Enhanced Laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS).
View Article and Find Full Text PDFThe complex role of drug metabolism-related enzymes and their possible influence in cancer development, treatment and outcome has not yet been completely elucidated. There is evidence that these enzymes can activate certain environmental procarcinogens to more toxic derivatives and thus a role has been proposed for them in carcinogenesis. The fact that they can also inactivate a number of chemotherapeutic drugs has raised the possibility of these enzymes influencing the sensitivity of tumour cells to anticancer agents.
View Article and Find Full Text PDFThis paper describes the first miRNA analysis carried out on hamster cells specifically Chinese hamster ovary (CHO) cells which are the most important cell line for the manufacture of human recombinant biopharmaceutical products. During biphasic culture, an initial phase of rapid cell growth at 37 degrees C is followed by a growth arrest phase induced through reduction of the culture temperature. Growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase.
View Article and Find Full Text PDFBackground: Skin cancer accounts for 1/3 of all newly diagnosed cancer. Although seldom fatal, basal cell carcinoma (BCC) is associated with severe disfigurement and morbidity. BCC has a unique interest for researchers, as although it is often locally invasive, it rarely metastasises.
View Article and Find Full Text PDFThe long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model.
View Article and Find Full Text PDFCell therapy may have the potential for the treatment of Type I diabetes. To date, cells suitable for this purpose have not been developed. This study investigates the feasibility of modifying Vero, a cell line that may be considered safe to implant into humans, for this purpose.
View Article and Find Full Text PDF