Publications by authors named "Patrick G Steel"

The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to and positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry.

View Article and Find Full Text PDF

Heterocycles are a cornerstone of fragment-based drug discovery (FBDD) due to their prevalence in biologically active compounds. However, novel heterocyclic fragments are only valuable if they can be suitably elaborated to compliment a chosen target protein. Here we describe the synthesis of 5-halo-1-pyrazolo[3,4-]pyridine scaffolds and demonstrate how these compounds can be selectively elaborated along multiple growth-vectors.

View Article and Find Full Text PDF

In the unicellular parasites spp., the etiological agents of leishmaniasis, a complex infectious disease that affects 98 countries in 5 continents, chemical inhibition of HSP90 protein leads to differentiation from promastigote to amastigote stage. Recent studies indicate potential role for protein phosphorylation in the life cycle control of .

View Article and Find Full Text PDF

Objectives: Miltefosine is the first and only oral medication to be successfully utilized as an antileishmanial agent. However, the drug is associated with differences in exposure patterns and cure rates among different population groups e.g.

View Article and Find Full Text PDF

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available.

View Article and Find Full Text PDF

Activity-based protein profiling (ABPP) is a chemoproteomic technology that employs small chemical probes to directly interrogate protein function within complex proteomes. Since its initial application almost 25 years ago, ABPP has proven to be a powerful and versatile tool for addressing numerous challenges in drug discovery, including the development of highly selective small-molecule inhibitors, the discovery of new therapeutic targets, and the illumination of target proteins in tissues and organisms. This graphical review provides an overview of the rapid evolution of ABPP strategies, highlighting the versatility of the approach with selected examples of its successful application.

View Article and Find Full Text PDF

Chagas disease is a vector-borne illness caused by the protozoan parasite (). It poses a significant public health burden, particularly in the poorest regions of Latin America. Currently, there is no available vaccine, and chemotherapy has been the traditional treatment for Chagas disease.

View Article and Find Full Text PDF

Miltefosine is a repurposed anticancer drug and currently the only orally administered drug approved to treat the neglected tropical disease leishmaniasis. Miltefosine is hygroscopic and must be stored at subzero temperatures. In this work, we report the X-ray structures of miltefosine monohydrate and methanol solvate, along with 12- and 14-carbon chain analogue hydrates and a solvate.

View Article and Find Full Text PDF

Leishmaniasis are a group of diseases caused by parasitic protozoa of the genus . Current treatments are limited by difficult administration, high cost, poor efficacy, toxicity, and growing resistance. New agents, with new mechanisms of action, are urgently needed to treat the disease.

View Article and Find Full Text PDF

Synthesized small molecules are useful as tools to investigate hormonal signaling involved in plant growth and development. They are also important as agrochemicals to promote beneficial properties of crops in the field. We describe here the synthesis and mode of action of a novel growth-promoting chemical, A1.

View Article and Find Full Text PDF

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx).

View Article and Find Full Text PDF

The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione--transferase (GSTF1) as a functional biomarker of MHR in black-grass (). This study provides further insights into the role of GSTF1 in MHR using a combination of chemical and structural biology.

View Article and Find Full Text PDF

Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals.

View Article and Find Full Text PDF

Current chemotherapeutics for leishmaniasis have multiple deficiencies, and there is a need for new safe, efficacious, and affordable medicines. This study describes a successful drug repurposing approach that identifies the over-the-counter antihistamine, clemastine fumarate, as a potential antileishmanial drug candidate. The screening for inhibitors of the sphingolipid synthase (inositol phosphorylceramide synthase, IPCS) afforded, following secondary screening against (Lmj) promastigotes, 16 active compounds.

View Article and Find Full Text PDF

Stomatal aperture is tightly regulated in order to achieve the best compromise between gas exchange and water conservation. Steady-state (basal) stomatal aperture is therefore understandably a key component in plant fitness. It has been shown previously in tomato that DELLA proteins act as positive regulators of closure of stomata, and their action is enhanced by the hormone ABA, which is itself important in mediating drought stress tolerance.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a major health problem in many countries and its current treatment involves multiple parenteral injections with toxic drugs and requires intensive health services. Previously, the efficacy of a single subcutaneous injection with a slow-release formulation consisting of poly(lactide-co-glycolide) (PLGA) microparticles loaded with an antileishmanial 3-nitro-2-hydroxy-4,6-dimethoxychalcone (CH8) was demonstrated in mice model. In the search for more easily synthesized active chalcone derivatives, and improved microparticle loading, CH8 analogues were synthesized and tested for antileishmanial activity in vitro and in vivo.

View Article and Find Full Text PDF

The iridium-catalysed borylation of aromatic C-H bonds has become the preferred method for the synthesis of aromatic organoboron compounds. The reaction is highly efficient, tolerant of a broad range of substituents and can be applied to both carbocyclic and heterocyclic substrates. The regioselectivity of C-H activation is dominated by steric considerations and there have been considerable efforts to develop more selective processes for less constrained substrates.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a neglected parasitic disease conventionally treated by multiple injections with systemically toxic drugs. Aiming at a more acceptable therapy, we developed lipid-core nanocapsules (LNCs) entrapping the potent antileishmanial chalcone (CH8) for topical application. Rhodamine-labeled LNC (Rho-LNC-CH8) was produced for imaging studies.

View Article and Find Full Text PDF

Resistance to 157 different herbicides and 88% of known sites of action has been observed, with many weeds resistant to two or more modes. Coupled with tighter environmental regulation, this demonstrates the need to identify new modes of action and novel herbicides. The plant sphingolipid biosynthetic enzyme, inositol phosphorylceramide synthase (IPCS), has been identified as a novel, putative herbicide target.

View Article and Find Full Text PDF

This research was undertaken to investigate the global role of the plant inositol phosphorylceramide synthase (IPCS), a non-mammalian enzyme previously shown to be associated with the pathogen response. RNA-Seq analyses demonstrated that over-expression of inositol phosphorylceramide synthase isoforms AtIPCS1, 2 or 3 in Arabidopsis thaliana resulted in the down-regulation of genes involved in plant response to pathogens. In addition, genes associated with the abiotic stress response to salinity, cold and drought were found to be similarly down-regulated.

View Article and Find Full Text PDF

Discovery and development of new therapeutic options for the treatment of () infection are desperately needed to tackle the continuing global burden of this disease and the efficacy and cost limitations associated with current medicines. Herein, we report the synthesis of a series of novel benzoxa-[2,1,3]-diazole substituted amino acid hydrazides in a two-step synthesis and evaluate their inhibitory activity against and selected bacterial strains of clinical importance utilising an end point-determined REMA assay. Alongside this, their potential for undesired cytotoxicity against mammalian cells was assessed employing standard MTT assay methodologies.

View Article and Find Full Text PDF

Organoboron compounds are valuable synthetic intermediates that find application in a diverse variety of processes including both C-X and C-C bond-forming transformations. This has been achieved by using a variety of boron derivatives. Of these, boronate esters are probably the most versatile and, reflecting this, methods for the generation of boronate esters are of considerable current interest.

View Article and Find Full Text PDF

Leishmaniasis is a Neglected Tropical Disease caused by the insect-vector borne protozoan parasite, Leishmania species. Infection affects millions of the world's poorest, however vaccines are absent and drug therapy limited. Recently, public-private partnerships have developed to identify new modes of controlling leishmaniasis.

View Article and Find Full Text PDF

Background: Herbicide safening in cereals is linked to a rapid xenobiotic response (XR), involving the induction of glutathione transferases (GSTs). The XR is also invoked by oxidized fatty acids (oxylipins) released during plant stress, suggesting a link between these signalling agents and safening. To examine this relationship, a series of compounds modelled on the oxylipins 12-oxophytodienoic acid and phytoprostane 1, varying in lipophilicity and electrophilicity, were synthesized.

View Article and Find Full Text PDF

Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the genus Leishmania for which there is a paucity of effective viable non-toxic drugs. There are 1·3 million new cases each year causing considerable socio-economic hardship, best measured in 2·4 million disability adjusted life years, with greatest impact on the poorest communities, which means that desperately needed new antileishmanial treatments have to be both affordable and accessible. Established medicines with cheaper and faster development times may hold the cure for this neglected tropical disease.

View Article and Find Full Text PDF