Dual-comb LiDARs have the potential to perform high-resolution ranging at high speed. Here, through an implementation involving electro-optic modulators and heterodyne detection, we quantify the ranging systems trade-off between precision and non-ambiguity range (NAR) using a unique performance factor. We highlight the influence of the comb amplitude envelope on the precision with a distance measurement limited by the repetition rate of the optical comb.
View Article and Find Full Text PDFAtmospheric turbulence can generate scintillation or beam wandering phenomena that impairs free space optical (FSO) communication. In this paper, we propose and demonstrate a proof-of-concept FSO communication receiver based on a spatial demultiplexer and a photonic integrated circuit coherent combiner. The receiver collects the light from several Hermite Gauss spatial modes and coherently combine on chip the energy from the different modes into a single output.
View Article and Find Full Text PDFWe address the detection of manufactured objects in different types of environments with active polarimetric imaging. Using an original, fully adaptive imager, we compare several imaging modes having different numbers of polarimetric degrees of freedom. We demonstrate the efficiency of active polarimetric imaging for decamouflage and hazardous object detection, and underline the characteristics that a polarimetric imager aimed at this type of application should possess.
View Article and Find Full Text PDFWe designed and built an active polarimetric imager with laser illumination at 1.5 μm wavelength for adaptive polarimetric contrast optimization. It can generate and analyze any polarization state on the Poincaré sphere in order to best adapt to the polarimetric properties of the scene.
View Article and Find Full Text PDFSpectroscopic properties, two-photon absorption (TPA) and excited state absorption (ESA), of two organic cyanine dyes and of a ruthenium based organometallic cyanine are compared in order to rationalize their similar ns-optical power limiting (OPL) efficiency in the telecommunication wavelength range. The TPA contribution to the ns-OPL behavior is higher for both organic cyanines, while the main process is a TPA-induced ESA in the case of the organometallic system, in which the ruthenium induces a broadening of the NIR-ESA band and resulting in a strong spectral overlap between TPA and ESA spectra.
View Article and Find Full Text PDFClear-air turbulence could be detected at long range using a UV lidar. Because the vertical speed cannot be retrieved from Doppler shift analysis at long range, the turbulence detection is based on the measurement of molecular density fluctuation associated with the turbulent wind. After an optimization of the characteristics of the candidate UV lidar, we present an evaluation of the detection range and of the false alarm rate and missed alarm rate depending on the altitude and vertical velocity root mean square.
View Article and Find Full Text PDFAlthough being an efficient photochromic compound which absorbs in the blue in its stable form and in the orange in its photoactivated form, the mercury dithizonate complex is shown to be a poor optical limiter for nanosecond laser pulses at the wavelengths where both isomers absorb. Optical limiting effect, which is a consequence of reverse saturable absorption due to the photoactivated form, is demonstrated to be weak because of the back photobleaching of this form, which is important all the more as the laser intensity is high. Numerical integration of the spatiotemporal evolution of the laser beam intensity across the solution helps the understanding of the respective roles of the laser fluence and pulse duration.
View Article and Find Full Text PDF