Publications by authors named "Patrick Ettenhuber"

Quantum chemistry is one of the most promising applications for which quantum computing is expected to have a significant impact. Despite considerable research in the field of electronic structure, calculating the vibrational properties of molecules on quantum computers remains a relatively unexplored field. In this work, we develop a vibrational Adaptive Derivative-Assembled Pseudo-Trotter Variational Quantum Eigensolver (vADAPT-VQE) formalism based on an infinite product representation (IPR) of anti-Hermitian excitation operators of the Full Vibrational Configuration Interaction (FVCI) wavefunction, which allows for preparing eigenstates of vibrational Hamiltonians on quantum computers.

View Article and Find Full Text PDF

The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide-expand-consolidate coupled cluster calculations for large molecular systems with rigorous error control.

View Article and Find Full Text PDF

The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel.

View Article and Find Full Text PDF

We propose a reformulation of the traditional (T) triples correction to the coupled cluster singles and doubles (CCSD) energy in terms of local Hartree-Fock (HF) orbitals such that its structural form aligns with our recently developed linear-scaling divide-expand-consolidate (DEC) coupled cluster family of local correlation methods. In a DEC-CCSD(T) calculation, a basis of local occupied and virtual HF orbitals is used to partition the correlated calculation on the full system into a number of independent atomic fragment and pair fragment calculations, each performed within a truncated set of the complete orbital space. In return, this leads to a massively parallel algorithm for the evaluation of the DEC-CCSD(T) correlation energy, which formally scales linearly with the size of the full system and has a tunable precision with respect to a conventional CCSD(T) calculation via a single energy-based input threshold.

View Article and Find Full Text PDF

The direct inversion of the iterative subspace (DIIS) convergence acceleration algorithm is used in most electronic structure programs to solve the nonlinear coupled cluster amplitude equations. When the DIIS algorithm is used, the storage of previous trial vectors may become a bottleneck and the discarding of trial vectors may lead to a degradation of the convergence or even divergence. We discuss an alternative way of storing information from trial vectors where only the last three trial vectors are needed to maintain the convergence of the full set of previous trial vectors, and which requires only minor modifications of an existing DIIS code.

View Article and Find Full Text PDF

We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave function parameters for the noninteracting system is the same as for the interacting system. This ensures a delicate balance between the quality of the monomer and dimer finite basis set calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Dalton is a versatile program for analyzing molecular electronic structure using various advanced theoretical methods like Hartree-Fock and configuration interaction.
  • It provides calculations for a range of molecular properties, including energy, gradients for optimization, and responses for studies like vibrational and magnetic resonance.
  • Dalton is free to use and compatible with UNIX systems, allowing research on large molecules through efficient algorithms.
View Article and Find Full Text PDF

Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown.

View Article and Find Full Text PDF