The Wisconsin Rapids Wastewater Treatment Plant (WRWWTP) is faced with a more stringent effluent phosphorus requirement that will drive capital investment between 2020 and 2025. The facility will need to achieve a monthly average value of 0.36 mg L of total phosphorus (TP).
View Article and Find Full Text PDFWater resource recovery facilities are faced with stringent effluent phosphorus limits to reduce nutrient pollution. Enhanced biological phosphorus removal (EBPR) is the most common biological route to remove phosphorus; however, many facilities struggle to achieve consistent performance due to limited carbon availability in the influent wastewater. A promising process to improve carbon availability is through return activated sludge (RAS) fermentation via sidestream EBPR (S2EBPR).
View Article and Find Full Text PDFSidestream EBPR (S2EBPR) is an emerging alternative process to address common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. A systematic evaluation and comparison of the process performance and microbial community structure was conducted between conventional and S2EBPR facilities in North America. The statistical analysis suggested higher performance stability in S2EBPR than conventional EBPR, although possible bias associated with other plant-specific factors might have affected the comparison.
View Article and Find Full Text PDFThis paper summarizes recent developments in biological phosphorus removal modelling, with special attention to side-stream enhanced biological phosphorus removal (S2EBPR) systems on which previous models proved to be ineffective without case-by-case parameter adjustments. Through the research and experience of experts and practitioners, a new bio-kinetic model was developed including an additional group of biomass (glycogen accumulating organisms - GAOs) and new processes (such as aerobic and anoxic maintenance for PAO and GAO; enhanced denitrification processes; fermentation by PAOs which - along with PAO selection - is driven by oxidation-reduction potential (ORP)). This model successfully described various conditions in laboratory measurements and full plant data.
View Article and Find Full Text PDFEnhanced biological phosphorus removal (EBPR) was observed in high-rate, non-nitrifying plants in the United States that were operated in a plug-flow mode. In facilities designed for nitrification and denitrification, a first-stage anaerobic zone, free of nitrate and nitrite was needed to accomplish EBPR, and this is referred to as the Phoredox (a.k.
View Article and Find Full Text PDF