Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals; the vast majority are environmentally and biologically persistent, and some have demonstrated toxicity, including cancer, effects on metabolism, endocrine disruption, and immune dysfunction. Suppression of T-cell-dependent antibody responses (TDAR) has been observed in numerous studies of PFAS but mechanisms remain elusive. Evidence from our work suggests that B cells and how they use energy are impacted by PFAS exposure.
View Article and Find Full Text PDFD2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells.
View Article and Find Full Text PDFMost studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues.
View Article and Find Full Text PDFSARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants.
View Article and Find Full Text PDFSciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6C monocytes infiltrate the nerve first and rapidly give way to Ly6C inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology.
View Article and Find Full Text PDFThe success of B cell depletion therapies and identification of leptomeningeal ectopic lymphoid tissue (ELT) in patients with multiple sclerosis (MS) has renewed interest in the antibody-independent pathogenic functions of B cells during neuroinflammation. The timing and location of B cell antigen presentation during MS and its animal model experimental autoimmune encephalomyelitis (EAE) remain undefined. Using a new EAE system that incorporates temporal regulation of MHCII expression by myelin-specific B cells, we observed the rapid formation of large B cell clusters in the spinal cord subarachnoid space.
View Article and Find Full Text PDFExperimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS), induced by the adoptive transfer of myelin-reactive CD4+ T cells into naive syngeneic mice. It is widely used as a rodent model of multiple sclerosis (MS). The development of EAE lesions is initiated when transferred CD4+ T cells access the CNS and are reactivated by local antigen-presenting cells (APCs) bearing endogenous myelin peptide/MHC class II complexes.
View Article and Find Full Text PDFBackground: Myelin oligodendrocyte glycoprotein (MOG)-reactive T-helper (Th)1 cells induce conventional experimental autoimmune encephalomyelitis (cEAE), characterized by ascending paralysis and monocyte-predominant spinal cord infiltrates, in C57BL/6 wildtype (WT) hosts. The same T cells induce an atypical form of EAE (aEAE), characterized by ataxia and neutrophil-predominant brainstem infiltrates, in syngeneic IFNγ receptor (IFNγR)-deficient hosts. Production of ELR+ CXC chemokines within the CNS is required for the development of aEAE, but not cEAE.
View Article and Find Full Text PDFGM-CSF has been portrayed as a critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG) The mechanism of action of GM-CSF in EAE is poorly understood. In this study, we show that GM-CSF augments the accumulation of MOG-specific T cells in the skin draining lymph nodes of primed mice, but it is not required for the development of encephalitogenic T cells.
View Article and Find Full Text PDFObjective: Myeloid cells, including macrophages and dendritic cells, are a prominent component of central nervous system (CNS) infiltrates during multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). Although myeloid cells are generally thought to be proinflammatory, alternatively polarized subsets can serve noninflammatory and/or reparative functions. Here we investigate the heterogeneity and biological properties of myeloid cells during central nervous system autoimmunity.
View Article and Find Full Text PDFA series of controlled clinical trials have shown that exogenous interferon-beta (IFN-β) benefits patients with relapsing-remitting multiple sclerosis (RRMS) by reducing relapse rate, disability progression, and the formation of new brain and spinal cord lesions on magnetic resonance imaging (MRI) scans. Unfortunately, however, the effectiveness of IFN-β is limited in this setting by the occurrence of treatment non-responsiveness in nearly 25% of patients. Furthermore, clinicians who care for RRMS patients remain unable to accurately identify IFN-β non-responders prior to the initiation of therapy, causing delays in the use of alternative treatments and sometimes requiring that patients turn to medications with more significant side effects to control their disease.
View Article and Find Full Text PDFThe central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.
View Article and Find Full Text PDFThe adoptive transfer of myelin-reactive T cells into wild-type hosts results in spinal cord inflammation and ascending paralysis, referred to as conventional experimental autoimmune encephalomyelitis (EAE), as opposed to brainstem inflammation and ataxia, which characterize disease in IFN-γRKO hosts (atypical EAE). In this article, we show that atypical EAE correlates with preferential upregulation of CXCL2 in the brainstem, and is driven by CXCR2-dependent recruitment of neutrophils. In contrast, conventional EAE is associated with upregulation of CCL2 in the spinal cord, and is driven by recruitment of monocytes via a partially CCR2-dependent pathway.
View Article and Find Full Text PDFEpstein-Barr virus-induced gene 3 (EBI3) associates with p28 and p35 to form the immunomodulatory cytokines IL-27 and IL-35, respectively. Infection of EBI3-/- mice with the neuroadapted JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality that was not associated with impaired ability to control viral replication but enhanced T cell and macrophage infiltration into the CNS. IFN-γ secretion from virus-specific CD4+ and CD8+ T cells isolated from infected EBI3-/- mice was augmented while IL-10 expression muted in comparison to infected WT mice.
View Article and Find Full Text PDFMethamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important.
View Article and Find Full Text PDF