Publications by authors named "Patrick Drogui"

This research paper deals with a novel method utilizing packed bed electrocoagulation (PBEC) comprising of sacrificial iron electrodes and coupled with extracellular polymeric substances (EPS) used as flocculent agents for the treatment of commercial laundry wastewater (LWW). The study employs stainless steel cathodes, graphite anodes, and scrap iron pieces as sacrificial electrodes, ensuring efficient treatment in dynamic batch mode operation with enhanced contact time facilitated by serpentine flow. The initial characteristics of LWW were COD 579 ± 30 mg/L, TSS of 60 ± 10 mg/L, TS of 622 ± 20 mg/L, turbidity of 110 ± 5 NTU, pH of 9 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • Pure Magnéli-phase TiO coatings were created using a Plasma Torch method and tested for their effectiveness in degrading harmful pollutants like PFOA and PFOS in water, achieving degradation efficiencies of up to 99.7% under optimized conditions.
  • Analysis methods (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) confirmed the unique structure and high surface area of the coatings, contributing to their effectiveness compared to traditional anodes.
  • Using the optimal electro-catalytic oxidation process, the researchers also treated real wastewater with multiple PFAS compounds, achieving substantial degradation rates for some pollutants, demonstrating the potential for this method in environmental cleanup.
View Article and Find Full Text PDF

Hydrogen is a promising alternative to meet the world's energy demand in the future because of its energetic characteristics. Microbial electrolysis cell (MEC) produces hydrogen from organic matter using exoelectrogenic bacteria. Shewanella oneidensis stands out for having the capacity to produce hydrogen using different electron transfer mechanisms.

View Article and Find Full Text PDF

Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO).

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure.

View Article and Find Full Text PDF

Microplastics and nanoplastics (NPs) in laundry wastewater (LWW) are major sources of plastic particles in wastewater treatment plants. Unlike microplastics, almost no information exists in the literature on the degradation of NPs in LWW. In this work, the degradation of NPs in commercial LWW by the electro-peroxidation process is investigated.

View Article and Find Full Text PDF

Unlabelled: In recent years, artificial intelligence (AI) techniques have been recognized as powerful techniques. In this work, AI techniques such as artificial neural networks (ANNs), support vector machines (SVM), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithms (GA), and particle swarm optimization (PSO), used in water and wastewater treatment processes, are reviewed. This paper describes applications of the mentioned AI techniques for the modelling and optimization of electrochemical processes for water and wastewater treatment processes.

View Article and Find Full Text PDF

Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis.

View Article and Find Full Text PDF

Wastewater generated from households can be classified into greywater and blackwater. Greywater makes up a substantial portion of household wastewater. Such water consists of wastewater released from kitchen sinks, showers, laundries, and hand basins.

View Article and Find Full Text PDF

Laundry related activities produce huge quantity of wastewater that is very rich in lint, dyes, surfactants, and detergents. The large amount of laundry wastewater (LWW) is generated by extensive human activities. LWW needs to be treated in order to tackle the challenging problem of water pollution and to accomplish water sustainability.

View Article and Find Full Text PDF

This study aimed at understanding the influence of the generation of oxidants in a heterogeneous way at boron-doped diamond (BDD) anode (anodic oxidation (AO)) or homogeneously in the bulk (electro-Fenton (EF)) during treatment of a textile industry wastewater. Both processes achieved high TOC removal. A yield of 95 % was obtained by combining EF with BDD anode during 6 h of treatment.

View Article and Find Full Text PDF

The application and design of treatment systems in wastewater are necessary due to antibiotics' potential toxicity and resistant genes on residual effluent. This work evaluated a coupled bio-electrochemical system to reduce chloramphenicol (CAP) and chemical oxygen demand (COD) on swine wastewater (SWW). SWW characterization found CAP of <10 μg/L and 17,434 mg/L of COD.

View Article and Find Full Text PDF

Fermentation of was conducted using crude glycerol fortified with secondary paper mill sludge as a carbon source in 5 L fermenter. After 96 hours of fermentation, the fermented broth contained mostly microbial cells surrounded by extracellular polymeric substances (EPS) and other particulate residues from paper mill sludge and glycerol. When this fermented broth is used as it is, it is called broth EPS (B-EPS).

View Article and Find Full Text PDF

The gap between water demand and available water supply led to wastewater treatment, particularly greywater. Due to specific characteristics of grey wastewater, treatment and recycling of this type of wastewater capture global attention. This paper presents a literature review of the remediation of greywater by adsorption processes.

View Article and Find Full Text PDF

The study investigated the treatment efficiency of coupled electrocoagulation (EC) and electrooxidation (EO) processes for landfill leachate treatment in batch and continuous mode. The EC process (iron anode and graphite cathode) at 18.2 mA/cm for 2.

View Article and Find Full Text PDF

Microplastics and nanoplastics (NPs) are emerging water contaminants which have recently gained lots of attention because of their effects on the aquatic systems and human life. Most of the previous works on the treatment of plastic pollution in water have been focused on microplastics and a very limited study has been performed on the NPs treatment. In this work, the role of main reactive oxygen species (ROSs) in the electrooxidation (EO) and electro-peroxidation (EO-HO) of NPs in water is investigated.

View Article and Find Full Text PDF

Rapid urbanization has increased the demand for food, feed, and chemicals that have in turn augmented the use of fossil-based resources and generation of organic waste. Owning to the characteristics like high abundance, renewability, and ease of accessibility, valorization of organic wastes serves as a potential solution for waste management issues. Several industrial wastes, due to their organic and nutrient-rich composition, have been utilized as a resource for the production of value-added products such as biofuels, biopesticides, biohydrogen, enzymes, and bioplastics via microbial fermentation processes.

View Article and Find Full Text PDF

In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are produced by numerous microbes as a subcellular energy source. Despite of their diverse applications, exorbitant production cost limits their commercial synthesis. Apart from various cost determining factors such as cost-effective feedstocks or economic recovery methods, the use of appropriate bacteria holds the key to reduce the fermentation economics.

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used antibiotic, is frequently detected in the environment due to insufficient wastewater and water treatment. Hence, novel, green and cost-effective technologies are required to enhance the removal of these pollutants. The potency of crude enzymes, especially laccases, produced by white-rot fungi was tested to assess their effectiveness to degrade CIP from water.

View Article and Find Full Text PDF

The concern over the damaging effects of petrochemical plastics has inspired innumerable researchers to synthesize green plastics. Polyhydroxyalkanoates (PHAs) are promising candidates as they are biodegradable and possess characteristics similar to conventional plastics. However, their large-scale production and market application still have a long way to go due to the high production cost associated.

View Article and Find Full Text PDF

Defluoridation of groundwater was performed in a batch reactor using bivalve shell powder (BSP) as adsorbent. The physicochemical characteristics of BSP, studied by Fourier Transform Infrared, X-ray Diffraction and Inductively Coupled Plasma-Optical Emission Spectrometry after dissolution, have shown that BSP was mainly composed of crystalline CaCO (∼97.8%).

View Article and Find Full Text PDF

In this work, established treatment processes for microplastics (MPs) and nanoplastics (NPs) in water as well as developed analytical techniques for evaluation of the operation of these processes were reviewed. In this regard, the strengths and limitations of different qualitative and quantitative techniques for the analysis of MPs and NPs in water treatment processes were first discussed. Afterward, the MPs and NPs treatment processes were categorized into the separation and degradation processes and the challenges and opportunities in their performance were analyzed.

View Article and Find Full Text PDF

The present study aims to fill the data gap analysis in urban wastewaters characteristics in Benin and its statistical analysis. Physicochemical parameters such as pH, electrical conductivity (EC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Kjeldahl Nitrogen (TKN), Total Phosphorus (TP) and UV Absorbance at 254 nm, were determined on domestic (greywater and blackwater) and industrial (hospital, pharmaceutical and commercial laundry) wastewater in Cotonou city. Analysis of variance showed a strong significant difference in the physico-chemistry of the various effluents.

View Article and Find Full Text PDF