Publications by authors named "Patrick Downey"

Article Synopsis
  • Protein misfolding and aggregation into complex structures are common in neurodegenerative diseases, affecting conditions like Parkinson's.
  • Single-molecule techniques have improved the study of these rare protein aggregates, but they often require tagged proteins or non-specific dyes.
  • The researchers developed a method using high-affinity antibodies and advanced microscopy to specifically detect α-synuclein aggregates in low concentrations within biological samples.
View Article and Find Full Text PDF

Protein misfolding and aggregation is a characteristic of many neurodegenerative disorders, including Alzheimer's and Parkinson's disease. The oligomers generated during aggregation are likely involved in disease pathogenesis and present promising biomarker candidates. However, owing to their small size and low concentration, specific tools to quantify and characterize aggregates in complex biological samples are still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) exhibits a wide variety of symptoms and progression speeds, complicating the creation of effective treatment trials.
  • By clustering patients based on their progression patterns using AI, researchers identified distinct groups with varying symptoms and treatment responses.
  • This research enhances the understanding of PD's heterogeneity and suggests specific biological mechanisms and genetic factors that could explain differences among patient subgroups.
View Article and Find Full Text PDF
Article Synopsis
  • Protein misfolding and aggregation into structures like oligomers and fibrils are linked to various neurodegenerative diseases.
  • Traditional methods for studying these aggregates often lack specificity and rely on labeled proteins or non-specific stains.
  • The researchers developed a new technique using a high-affinity antibody with unique fluorophores and advanced microscopy to specifically identify and analyze α-synuclein aggregates in low concentrations, relevant to biological samples.
View Article and Find Full Text PDF
Article Synopsis
  • - The study developed a rat model (A53T-AAV) to analyze the progression of Parkinson's disease by tracking motor function and dopaminergic deficits over 12 weeks.
  • - Researchers used the [F]FMT Positron Emission Tomography (PET) radiotracer to monitor changes, noting increased phosphorylated α-synuclein and a decrease in dopaminergic function.
  • - The findings showed that reductions in [F]FMT PET signals correlated with observed motor dysfunction, establishing a reliable model for tracking alpha-synuclein pathology in relation to behavioral impairments.
View Article and Find Full Text PDF

Background: Assays that specifically measure α-synuclein seeding activity in biological fluids could revolutionize the diagnosis of Parkinson's disease. Recent improvements in α-synuclein real-time quaking-induced conversion assays of cerebrospinal fluid have dramatically reduced reaction times from 5-13 days down to 1-2 days.

Objective: To test our improved assay against a panel of cerebrospinal fluid specimens from patients with Parkinson's disease and healthy controls from the MJ Fox Foundation/NINDS BioFIND collection.

View Article and Find Full Text PDF

Tauopathies are neurodegenerative diseases characterized by the intraneuronal accumulation of aggregated tau. The staging of this neurodegenerative process is well established for Alzheimer's disease as well as for other tauopathies. The stereotypical pattern of tau pathology in these diseases is consistent with the hypothesis that the tau protein can spread in a 'prion-like' manner.

View Article and Find Full Text PDF

An emerging treatment for Parkinson's disease (PD) is cell replacement therapy. Authentic midbrain dopaminergic (mDA) neuronal precursors can be differentiated from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). These laboratory-generated mDA cells have been demonstrated to mature into functional dopaminergic neurons upon transplantation into preclinical models of PD.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) and other tauopathies, the cytosolic protein Tau misfolds and forms intracellular aggregates which accumulate within the brain leading to neurodegeneration. Clinical progression is tightly linked to the progressive spread of Tau pathology throughout the brain, and several lines of evidence suggest that Tau aggregates or "seeds" may propagate pathology by spreading from cell to cell in a "prion like" manner. Accordingly, blocking the spread of extracellular seeds with an antibody could be a viable therapeutic approach.

View Article and Find Full Text PDF

Objective: Investigate a combination of two clinically tested drugs, the NR2B antagonist Radiprodil and the A2A antagonist Tozadenant in the MPTP-treated marmoset model of Parkinson's Disease (PD).

Background: In PD, there remains a need for the development of non-dopaminergic drugs to effectively treat the motor symptoms without the induction of L-Dopa-induced motor complications.

Methods: Clinically relevant doses of Radiprodil and Tozadenant were given both alone and in combination without the addition of L-Dopa, and the antiparkinsonian efficacy of the treatments was assessed in a primate model of PD.

View Article and Find Full Text PDF

In Parkinson's disease (PD), dopaminergic therapies are often associated with the development of motor complications. Attention has therefore been focused on the use of non-dopaminergic drugs. This study developed a new behavioural method capable of demonstrating the added value of combining adenosinergic and glutamatergic receptor antagonists in unilateral 6-OHDA lesioned rats.

View Article and Find Full Text PDF

In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations.

View Article and Find Full Text PDF

With California's July 2009 opt-out from the Medicare physician supervision requirement for nurse anesthetists, 15 states have now opted out since 2001. The work of the American Association of Nurse Anesthetists (AANA) that led to the supervision opt-out rule being implemented has a long history. Beginning in 1994, when the Health Care Financing Administration (HCFA) first proposed deferring to the states on the supervision issue, the AANA worked for 7 years with HCFA and members of Congress to lay the groundwork for the opt-out rule that ultimately enabled the California governor's recent action.

View Article and Find Full Text PDF

mGluR1 receptors are believed to play major roles in the pathophysiology of diseases such as anxiety and chronic pain and are being actively investigated as targets for drug development. Sequence polymorphisms can potentially influence the efficacy of drugs in patient populations and are therefore an important consideration in the drug development process. To identify DNA sequence variants of the mGluR1 receptor, comparative DNA sequencing was performed on DNA samples (n=186) from apparently healthy subjects representing two ethnic groups.

View Article and Find Full Text PDF

Stable and inducible expression of human metabotropic glutamate receptor types 2, 5, and 8 was achieved in HEK293 cells using the ecdysone inducible system. Treatment of the respective cell lines with ponasterone A resulted in time and concentration-dependent induction of receptor expression. In all cases, the functional activation of receptors was determined by measuring increases in intracellular calcium.

View Article and Find Full Text PDF

We report the isolation and characterisation of DKT1, a new carrot K+ channel alpha-subunit belonging to the Shaker-like family. DKT1 is expressed in many tissues of the adult plant, suggesting that it may play important roles in both nutrition and other important physiological processes. During embryo development, DKT1 is expressed at later phases implying the involvement of K+ in embryo maturation.

View Article and Find Full Text PDF

Unlike all plant inward-rectifying potassium channels, the carrot channel KDC1 has two histidine pairs (H161,H162) in the S3-S4 and (H224,H225) in the S5-S6 linkers. When coinjected with KAT1 in Xenopus oocytes, KDC1 participates in the formation of heteromultimeric KDC1:KAT1 channels and the ionic current is potentiated by extracellular Zn2+. To investigate the potential interactions between KDC1 and zinc, a KDC1-KAT1 dimer was constructed.

View Article and Find Full Text PDF