Significance: Perturbations in the microcirculatory system have been observed in neurological conditions, such as Alzheimer's disease or systemic inflammation. However, changes occurring at the level of the capillary are difficult to translate to biomarkers that could be measured macroscopically.
Aim: We aim to evaluate whether transit time changes reflect capillary stalling and to what degree.
Significance: The imaging depth of microscopy techniques is limited by the ability of light to penetrate biological tissue. Recent research has addressed this limitation by combining a reflectance confocal microscope with the NIR-II (or shortwave infrared) spectrum. This approach offers significant imaging depth, is straightforward in design, and remains cost-effective.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
October 2023
Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity.
View Article and Find Full Text PDFUltrasound Localization Microscopy (ULM) can resolve the microvascular bed down to a few micrometers. To achieve such performance, microbubble contrast agents must perfuse the entire microvascular network. Microbubbles are then located individually and tracked over time to sample individual vessels, typically over hundreds of thousands of images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Two-photon microscopy (TPM) can provide a detailed microscopic information of cerebrovascular structures. Extracting anatomical vascular models from TPM angiograms remains a tedious task due to image degeneration associated with TPM acquisitions and the complexity of microvascular networks. Here, we propose a fully automated pipeline capable of providing useful anatomical models of vascular structures captured with TPM.
View Article and Find Full Text PDFGenerating computational anatomical models of cerebrovascular networks is vital for improving clinical practice and understanding brain oxygen transport. This is achieved by extracting graph-based representations based on pre-mapping of vascular structures. Recent graphing methods can provide smooth vessels trajectories and well-connected vascular topology.
View Article and Find Full Text PDFAn automated dual-resolution serial optical coherence tomography (2R-SOCT) scanner is developed. The serial histology system combines a low-resolution ( ) OCT with a high-resolution ( ) OCT to acquire whole mouse brains at low resolution and to target specific regions of interest (ROIs) at high resolution. The ROIs positions are selected either manually by the microscope operator or using an automated ROI positioning selection algorithm.
View Article and Find Full Text PDFGiven known correlations between vascular health and cognitive impairment, the development of tools to image microvasculature in the whole brain could help investigate these correlations. We explore the feasibility of using an automated serial two-photon microscope to image fluorescent gelatin-filled whole rodent brains in three-dimensions (3-D) with the goal of carrying group studies. Vascular density (VD) was computed using automatic segmentation combined with coregistration techniques to build a group-level vascular metric in the whole brain.
View Article and Find Full Text PDF