Publications by authors named "Patrick Del Vecchio"

The p-symmetry of the hole wavefunction is associated with a weaker hyperfine interaction, which makes hole spin qubits attractive candidates to implement quantum processors. However, recent studies demonstrate that hole qubits are still very sensitive to nuclear spin bath, thus highlighting the need for nuclear spin-free germanium (Ge) qubits to suppress this decoherence channel. Herein, this work demonstrates the epitaxial growth of Ge- and Si-depleted, isotopically enriched Ge/silicon-germanium (SiGe) quantum wells.

View Article and Find Full Text PDF

The quiet quantum environment of holes in solid-state devices is at the core of increasingly reliable architectures for quantum processors and memories. However, due to the lack of scalable materials to properly tailor the valence band character and its energy offsets, the precise engineering of light-hole (LH) states remains a serious obstacle toward coherent optical photon-spin interfaces needed for a direct mapping of the quantum information encoded in photon flying qubits to stationary spin processors. Herein, to alleviate this long-standing limitation, an all-group-IV low-dimensional system is demonstrated, consisting of a highly tensile strained germanium quantum well grown on silicon allowing new degrees of freedom to control and manipulate the hole states.

View Article and Find Full Text PDF