Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY.
View Article and Find Full Text PDFspecies are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how utilize smaller oligosaccharides is less well studied.
View Article and Find Full Text PDFThe horizontal transfer of mobile genetic elements (MGEs) is an essential process determining the functional and genomic diversity of bacterial populations. MGEs facilitate the exchange of fitness determinant genes like antibiotic resistance and virulence factors. Various computational methods exist to identify potential MGEs, but confirming their ability to transfer requires additional experimental approaches.
View Article and Find Full Text PDFLineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B.
View Article and Find Full Text PDFSignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an -produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including and , sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
View Article and Find Full Text PDFThe functional and genomic diversity of the human gut microbiome is shaped by horizontal transfer of mobile genetic elements (MGEs). Characterized MGEs can encode genes beneficial for their host's self-defense (e.g.
View Article and Find Full Text PDFHuman gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in and but remain undiscovered in the .
View Article and Find Full Text PDFHistorically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates.
View Article and Find Full Text PDFGut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus.
View Article and Find Full Text PDFSmall RNAs (sRNAs) posttranscriptionally regulate mRNA targets, typically under conditions of environmental stress. Although hundreds of sRNAs have been discovered in diverse bacterial genomes, most sRNAs remain uncharacterized, even in model organisms. Identification of mRNA targets directly regulated by sRNAs is rate-limiting for sRNA functional characterization.
View Article and Find Full Text PDFHuman gut use surface-exposed lipoproteins to bind and metabolize complex polysaccharides. Although vitamins and other nutrients are also essential for commensal fitness, much less is known about how commensal bacteria compete with each other or the host for these critical resources. Unlike in , transport loci for vitamin B (cobalamin) and other corrinoids in human gut are replete with conserved genes encoding proteins whose functions are unknown.
View Article and Find Full Text PDFThe earliest autoantibodies in lupus are directed against the RNA binding autoantigen Ro60, but the triggers against this evolutionarily conserved antigen remain elusive. We identified Ro60 orthologs in a subset of human skin, oral, and gut commensal bacterial species and confirmed the presence of these orthologs in patients with lupus and healthy controls. Thus, we hypothesized that commensal Ro60 orthologs may trigger autoimmunity via cross-reactivity in genetically susceptible individuals.
View Article and Find Full Text PDFWe conducted a study to examine the effect of seasonal variations and the disruptive effects of the 2015 Nepal earthquake on microbial communities associated with drinking water sources. We first characterized the microbial communities of water samples in two Nepali regions (Kathmandu and Jhapa) to understand the stability of microbial communities in water samples collected in 2014. We analyzed additional water samples from the same sources collected from May to August 2015, allowing the comparison of samples from dry-to-dry season and from dry-to-monsoon seasons.
View Article and Find Full Text PDFThiamine (vitamin B) is an essential cofactor for all organisms. Humans primarily acquire thiamine through their diet, and thiamine deficiencies have adverse neurological effects. However, the role gut microbes play in modulating thiamine availability is poorly understood, and little is known about how thiamine impacts the stability of microbial gut communities.
View Article and Find Full Text PDFThe microbial mechanisms and key metabolites that shape the composition of the human gut microbiota are largely unknown, impeding efforts to manipulate dysbiotic microbial communities toward stability and health. Vitamins, which by definition are not synthesized in sufficient quantities by the host and can mediate fundamental biological processes in microbes, represent an attractive target for reshaping microbial communities. Here, we discuss how vitamin B12 (cobalamin) impacts diverse host-microbe symbioses.
View Article and Find Full Text PDFSpecific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis.
View Article and Find Full Text PDFGenome architecture of a microbe markedly changes when it transitions from a free-living lifestyle to an obligate symbiotic association within eukaryotic cells. These symbiont genomes experience numerous rearrangements and massive gene loss, which is expected to radically alter gene regulatory networks compared with those of free-living relatives. As such, it remains unclear whether and how these small symbiont genomes regulate gene expression.
View Article and Find Full Text PDFGenomic and metagenomic sequencing efforts, including human microbiome projects, reveal that microbes often encode multiple systems that appear to accomplish the same task. Whether these predictions reflect actual functional redundancies is unclear. We report that the prominent human gut symbiont Bacteroides thetaiotaomicron employs three functional, homologous vitamin B₁₂ transporters that in at least two cases confer a competitive advantage in the presence of distinct B₁₂ analogs (corrinoids).
View Article and Find Full Text PDFThe complex and intimate relationship between humans and their gut microbial communities is becoming less obscure, due in part to large-scale gut microbial genome-sequencing projects and culture-independent surveys of the composition and gene content of these communities. These studies build upon, and are complemented by, experimental efforts to define underlying mechanisms of host-microbe interactions in simplified model systems. This review highlights the intersection of these approaches.
View Article and Find Full Text PDFMicrobes inhabiting the human gastrointestinal tract tend to adopt one of three characteristic community structures, called 'enterotypes', each of which is overrepresented by a distinct set of bacterial genera. Here we report that the gut microbiotae of chimpanzees also assort into enterotypes and that these chimpanzee enterotypes are compositionally analogous to those of humans. Through the analysis of longitudinal samples, we show that the microbial signatures of the enterotypes are stable over time, but that individual hosts switch between enterotypes over periods longer than a year.
View Article and Find Full Text PDFThe gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania.
View Article and Find Full Text PDFAnalyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements.
View Article and Find Full Text PDFMicrobes commonly exist in milieus of varying complexity and diversity. Although cultivation-based techniques have been unable to accurately capture the true diversity within microbial communities, these deficiencies have been overcome by applying molecular approaches that target the universally conserved 16S ribosomal RNA gene. The recent application of 454 pyrosequencing to simultaneously sequence thousands of 16S rDNA sequences (pyrotags) has revolutionized the characterization of complex microbial communities.
View Article and Find Full Text PDF