In this paper, a printed monopole antenna with high-gain and dual-band characteristics for applications in wireless local area networks and the internet of things sensor networks is presented. The proposed antenna consists of a rectangular patch with multiple matching stubs surrounded to improve the impedance bandwidth of the antenna. The antenna incorporates a cross-plate structure which is seated at the base of the monopole antenna.
View Article and Find Full Text PDFMultiple-input multiple-output (MIMO) wireless power transfer (WPT) technology which employs multiple transmitter (TX) coils to simultaneously couple power to the receiver (RX) coil has proved to be an effective technique to enhance power transfer efficiency (PTE). Conventional MIMO-WPT systems rely on the phase-calculation method based on the phased-array beam steering concept to constructively combine the magnetic fields induced by the multiple TX coils at the RX coil. However, increasing the number and distance of the TX coils in an attempt to enhance the PTE tends to deteriorate the received signal at the RX coil.
View Article and Find Full Text PDFThe power transfer efficiency (PTE) is a crucial aspect for effective wireless power transfer (WPT) applications. The quality factor (Q) of the WPT coil plays a critical role in ensuring higher PTE. In this paper, a novel method of improving the Q of a WPT coil is proposed.
View Article and Find Full Text PDFIn this paper, a printed monopole antenna with stable omnidirectional radiation patterns is presented for applications in ocean buoy and the marine Internet of Things (IoT). The antenna is composed of a rectangular patch, a cross-ground structure, and two frequency-selective surface (FSS) unit cells. The cross-ground structure is incorporated into the antenna design to maintain consistent monopole-like radiation patterns over the antenna's operating band, and the FSS unit cells are placed at the backside of the antenna to improve the antenna gain aiming at the L-band.
View Article and Find Full Text PDFIn this paper, a high efficiency broadband planar array antenna is developed at X-band for synthetic aperture radar (SAR) on small satellites. The antenna is based on a multi-layer element structure consisting of two dielectric substrates made of Taconic TLY-5 and three copper layers (i.e.
View Article and Find Full Text PDF