Publications by authors named "Patrick D Sinko"

Dissolution-permeation (D/P) experiments are widely used during preclinical development due to producing results with better predictability than traditional monophasic experiments. However, it is difficult to compare absorption across in vitro setups given the propensity to only report apparent permeability. We therefore developed an approach to predict the concentration boundary layer for any D/P device by using computational fluid dynamics (CFD).

View Article and Find Full Text PDF

The authors present a steady-state-, particle-size-, and dose-dependent dissolution-permeation model that describes particle dissolution within the concentration boundary layer (CBL) adjacent to a semipermeable surface. It is critical to understand how particle size and dose affect the behavior of dissolving particles in the presence of a CBL adjacent to a semipermeable surface both and . Control of particle size is ubiquitous in the pharmaceutical industry; however, traditional pharmaceutical assumptions of particle dissolution typically ignore particle dissolution within the length scale of the CBL.

View Article and Find Full Text PDF

In this work, simulations of intestinal peristalsis are performed to investigate the intraluminal transport of macromolecules (MMs) and permeation enhancers (PEs). Properties of insulin and sodium caprate (C) are used to represent the general class of MM and PE molecules. Nuclear magnetic resonance spectroscopy was used to obtain the diffusivity of C, and coarse-grain molecular dynamics simulations were carried out to estimate the concentration-dependent diffusivity of C.

View Article and Find Full Text PDF

Lipid-based formulations (LBFs) are used by the pharmaceutical industry in oral delivery systems for both poorly water-soluble drugs and biologics. Digestibility is key for the performance of LBFs and in vitro lipolysis is commonly used to compare the digestibility of LBFs. Results from in vitro lipolysis experiments depend highly on the experimental conditions and formulation characteristics, such as droplet size (which defines the surface area available for digestion) and interfacial structure.

View Article and Find Full Text PDF

Preclinical evaluation of modern oral dosage forms requires more advanced in vitro devices as the trend of selecting low solubility, high permeability compounds for commercial development continues. Current dissolution methodologies may not always be suitable for such compounds due to excessive fluid volume, high fluid shear rates, heterogeneity of shear rates, suboptimal fluid flow, and, ultimately, the lack of absorption ability (Gray The Science of USP 1 and 2 Dissolution: Present Challenges and Future Relevance; , 2009; Vol. 26; pp 1289-1302).

View Article and Find Full Text PDF

Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract.

View Article and Find Full Text PDF

The potential use of poly(dimethylsiloxane) (PDMS) as an in vitro biomimetic analogue of the passive drug absorption process in the human gastrointestinal tract (GI) is assessed. PDMS is biomimetic because of similarities in small molecule transport, such as mechanism, ionization selectivity, lipophilicity. Nine molecular probes are used to evaluate the transport pathways and properties used to predict human oral absorption rates.

View Article and Find Full Text PDF

There is growing need to develop efficient methods for early-stage drug discovery, continuous manufacturing of drug delivery vehicles, and ultra-precise dosing of high potency drugs. Here we demonstrate the use of solvent-free organic vapor jet printing to deposit nanostructured films of small molecular pharmaceutical ingredients, including caffeine, paracetamol, ibuprofen, tamoxifen, BAY 11-7082 and fluorescein, with accuracy on the scale of micrograms per square centimeter, onto glass, Tegaderm, Listerine tabs, and stainless steel microneedles. The printed films exhibit similar crystallographic order and chemistry as the original powders; controlled, order-of-magnitude enhancements of dissolution rate are observed relative to powder-form particles.

View Article and Find Full Text PDF

The objective of this study is to investigate processing challenges associated with the incorporation of Vitamin E TPGS (d-α tocopheryl polyethylene glycol 1000 succinate) into solid pharmaceutical dosage forms. For this work, a wet granulation process (high-shear and fluid bed) was used and Vitamin E TPGS was added as part of the binder solution during granulation. It was shown that Vitamin E TPGS can be incorporated into a prototype formulation at 10% w/w concentration without any significant processing challenges.

View Article and Find Full Text PDF