Background: There is a link with the upper and lower airway and disruption of alveolar epithelial cells, which is a potential trigger for the reactivation of the epithelial-mesenchymal trophic unit (EMTU) and induced characteristic airway changes associated with allergic asthma. Dermatophagoides pteronyssinus is a common inhalant indoor allergen and is known for causing allergic rhinitis and airway inflammation. Transforming growth factor beta 1 (TGF-beta1) is a major participant in the airway remodeling of asthma, a component of cellular stress response pathways, and enhanced epithelial immunoreactivity is known to occur in allergic rhinitis.
View Article and Find Full Text PDFThe mammalian protein deacetylase SIRT1 (sirtuin1) is widely recognized for its link to calorie restriction and longevity. SIRT1 not only modulates the function of protein targets such as p53 or NFkappaB, but it also affects gene transcription by causing hypoacetylation of associated nucleosomal histones. However, the identification of SIRT1-specific DNA targets that confer chromosomal stability and cell longevity have remained elusive.
View Article and Find Full Text PDF