Publications by authors named "Patrick D Anderson"

This study explores the novel approach of interface-crystallization-induced compatibilization (ICIC) via stereocomplexation as a promising method to improve the interfacial strength in thermodynamically immiscible polymers. Herein, two distinct reactive interfacial compatibilizers, poly(styrene--glycidyl methacrylate)--poly(l-lactic acid) (SAL) and poly(styrene--glycidyl methacrylate)--poly(d-lactic acid) (SAD) are synthesized via reactive melt blending in an integrated grafting and blending process. This approach is demonstrated to enhance the interfacial strength of immiscible polyvinylidene fluoride/poly l-lactic acid (PVDF/PLLA) 50/50 blends via ICIC.

View Article and Find Full Text PDF

Fiber-reinforced polymer composites are largely employed for their improved strength with respect to unfilled matrices. Considering semi-crystalline materials under relevant processing conditions, the applied pressure and flow induce shear stresses at the fiber-polymer interface. These stresses may strongly enhance the nucleation ability of the fiber surface with respect to the quiescent case.

View Article and Find Full Text PDF

Short liquid bridges are stable under the action of surface tension. In applications like electronic packaging, food engineering, and additive manufacturing, this poses challenges to the clean and fast dispensing of viscoelastic fluids. Here, we investigate how viscoelastic liquid bridges can be destabilized by torsion.

View Article and Find Full Text PDF

We present a rheometer that combines the possibility to perform in situ X-ray experiments with a precise and locally controlled uniaxial extensional flow. It thus allows us to study the crystallization kinetics and morphology evolution combined with the rheological response to the applied flow field. A constant uniaxial deformation rate is ensured, thanks to a fast control scheme that drives the simultaneous movement of the top and bottom plates during a pulling experiment.

View Article and Find Full Text PDF

Fluctuating viscoelasticity for conformation-tensor-based models is studied at equilibrium, in simple-shear deformation, and in uniaxial extension. The models studied are the upper-convected Maxwell model, the FENE-P model with finite chain-extensibility, and the Giesekus model with anisotropic drag. Using numerical simulations, the models are compared in detail both with each other and with analytical predictions for the Maxwell model.

View Article and Find Full Text PDF

Microfluidic mixing becomes a necessity when thorough sample homogenization is required in small volumes of fluid, such as in lab-on-a-chip devices. For example, efficient mixing is extraordinarily challenging in capillary-filling microfluidic devices and in microchambers with stagnant fluids. To address this issue, specifically designed geometrical features can enhance the effect of diffusion and provide efficient mixing by inducing chaotic fluid flow.

View Article and Find Full Text PDF

We present a unique laser sintering setup that allows real time studies of the structural evolution during laser sintering of polymer particles. The device incorporates the main features of classical selective laser sintering machines for 3D printing of polymers and at the same time allows in situ visualization of the sintering dynamics with optical microscopy as well as X-ray scattering. A main feature of the setup is the fact that it provides local access to one particle-particle bridge during sintering.

View Article and Find Full Text PDF

The ageing kinetics of amorphous atactic (a-PS), isotactic (i-PS), and syndiotactic (s-PS) polystyrene were studied by means of flash-differential scanning calorimetry. The specimens were aged for up to 2 h at six different ageing temperatures: the optimum ageing temperature, that is, the temperature at which the enthalpy overshoot at the glass transition is maximal for the given elapsed time, and five ageing temperatures ranging from 20 to 80 K below the optimum ageing temperature. A logarithmic increase of the enthalpy overshoot with ageing time is observed for specimens at their optimum ageing temperatures.

View Article and Find Full Text PDF

Merging of particle pairs during selective laser sintering (SLS) of polymers is vital in defining the final part properties. Depending on the sintering conditions, polymers can undergo full or partial sintering whereby incomplete sintering results in poor mechanical properties. At present, the underlying mechanisms and related conditions leading to various consolidation phenomena of polymer particles are not well understood.

View Article and Find Full Text PDF

Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics).

View Article and Find Full Text PDF

Simulations of rigid particles suspended in two-phase shear flow are presented, where one of the suspending fluids is viscoelastic, whereas the other is Newtonian. The Cahn-Hilliard diffuse-interface model is employed for the fluid-fluid interface, which can naturally describe the interactions between the particle and the interface (e.g.

View Article and Find Full Text PDF

We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime.

View Article and Find Full Text PDF

Aims: Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior.

View Article and Find Full Text PDF

To predict double-emulsion formation in a capillary microfluidic device, a ternary diffuse-interface model is presented. The formation of double emulsions involves complex interfacial phenomena of a three-phase fluid system, where each component can have different physical properties. We use the Navier-Stokes/Cahn-Hilliard model for a general ternary system, where the hydrodynamics is coupled with the thermodynamics of the phase field variables.

View Article and Find Full Text PDF

Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis.

View Article and Find Full Text PDF

Using the Mapping Method different designs of SMX motionless mixers are analyzed and optimized. The three design parameters that constitute a specific SMX design are: The number of cross-bars over the width of channel, N(x) , the number of parallel cross-bars per element, N(p) , and the angle between opposite cross-bars θ. Optimizing N(x) , somewhat surprisingly reveals that in the standard design with N(p)  = 3, N(x)  = 6 is the optimum using both energy efficiency as well as compactness as criteria.

View Article and Find Full Text PDF

Chaotic mixing, induced by breakup and reformation of a magnetic chain under the influence of a rotating magnetic field, is studied. A direct simulation method combining the Maxwell stress tensor and a fictitious domain method is employed to solve flows with suspended magnetic particles. The motion of the chain is significantly dependent on the Mason number (Ma), the ratio of viscous force to magnetic force.

View Article and Find Full Text PDF

The effect of insoluble surfactants on drop deformation and breakup in simple shear flow is studied using a combination of a three-dimensional boundary-integral method and a finite-volume method to solve the coupled fluid dynamics and surfactant transport problem over the evolving interface. The interfacial tension depends nonlinearly on the surfactant concentration, and is described by the equation of state for the Langmuir isotherm. Results are presented over the entire range of the viscosity's ratio lambda and the surface coverage x, as well as the capillary number Ca that spans from that for small deformation to values that are beyond the critical one Ca(cr).

View Article and Find Full Text PDF