Publications by authors named "Patrick Cozzone"

Article Synopsis
  • Heart failure (HF) and diabetes worsen each other’s outcomes, and this study evaluated global longitudinal strain (GLS) as a prognostic marker in HF patients with diabetes.
  • In a study of 315 HF patients, those with diabetes showed significantly worse cardiovascular indicators, such as higher late gadolinium enhancement rates and elevated biomarker levels compared to non-diabetic patients.
  • The results indicated that patients with diabetes not only had poorer health indicators but also a worse prognosis, with GLS and soluble ST2 biomarkers emerging as independent prognostic factors for adverse outcomes.
View Article and Find Full Text PDF

Background: Echocardiography is the diagnostic modality for assessing cardiac systolic and diastolic function to diagnose and manage heart failure. However, manual interpretation of echocardiograms can be time consuming and subject to human error. Therefore, we developed a fully automated deep learning workflow to classify, segment, and annotate two-dimensional (2D) videos and Doppler modalities in echocardiograms.

View Article and Find Full Text PDF

Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity.

View Article and Find Full Text PDF

Aims: A significant proportion of heart failure (HF) patients have HF preserved ejection fraction (HFpEF). The lack of effective treatments for HFpEF remains a critical unmet need. A key obstacle to therapeutic innovation in HFpEF is the paucity of pre-clinical models.

View Article and Find Full Text PDF

Animal models that recapitulate the human pathophysiology have been developed as useful research tools. Although laboratory mice are widely used, they are phylogenetically "distant" to humans. New world monkeys, such as the common marmoset (Callithrix jacchus) have steadily gained prominence.

View Article and Find Full Text PDF

We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e.

View Article and Find Full Text PDF

Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection.

View Article and Find Full Text PDF

Introduction: Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) might prevent heart failure or optimise drug treatments by improving cardiac contraction. We investigated whether DHA-enriched avian glycerophospholipids (GPL-DHA) exert cardioprotection in ouabain-treated rats after 4 weeks of dietary supplementation with 10, 35 or 60 mg DHA per kg body weight versus none (DHA10, DHA35, DHA60 and control groups, respectively). The contractile responsiveness to different doses of ouabain (10(-7) to 10(-4) M), ouabain intoxication (at 3 × 10(-4) M), and relative variations in cardiac energy metabolism were determined using (31)P NMR in isolated perfused rat hearts.

View Article and Find Full Text PDF

Objective: To quantify individual muscle volume in rat leg MR images using a fully automatic multi-atlas-based segmentation method.

Materials And Methods: We optimized a multi-atlas-based segmentation method to take into account the voxel anisotropy of numbers of MRI acquisition protocols. We mainly tested an image upsampling process along Z and a constraint on the nonlinear deformation in the XY plane.

View Article and Find Full Text PDF

Background: To derive an adapted protocol at ultra high magnetic field for mouse kidney perfusion measurements using pCASL in combination with three widely available fast imaging readouts: segmented SE EPI (sSE EPI), RARE, and TrueFISP.

Methods: pCASL sSE EPI, pCASL RARE, and pCASL TrueFISP were used for the acquisition of mouse kidney perfusion images in the axial and coronal planes at 11.75T.

View Article and Find Full Text PDF

Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged.

View Article and Find Full Text PDF

Background: To improve the extent over which whole brain quantitative three-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) maps can be obtained and be used to explore brain metabolism in a population of healthy volunteers.

Methods: Two short echo time (20 ms) acquisitions of 3D echo planar spectroscopic imaging at two orientations, one in the anterior commissure-posterior commissure (AC-PC) plane and the second tilted in the AC-PC +15° plane were obtained at 3 Tesla in a group of 10 healthy volunteers. B1 (+) , B1 (-) , and B0 correction procedures and normalization of metabolite signals with quantitative water proton density measurements were performed.

View Article and Find Full Text PDF

Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism.

View Article and Find Full Text PDF

Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosin slow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8-9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and in vivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Purpose: This study compared the metabolic and activation changes induced by electrically evoked (neuromuscular electrical stimulation (NMES)) and voluntary (VOL) contractions performed at the same submaximal intensity using P chemical shift imaging (CSI) and T2 mapping investigations.

Methods: Fifteen healthy subjects were asked to perform both NMES and VOL protocols with the knee extensors (i.e.

View Article and Find Full Text PDF

Purpose: Recently a new MR endogenous contrast mechanism was reported. It allows specifically imaging the magnetization transfer (MT) effect arising from inhomogeneously broadened components of the NMR spectrum, and was hence dubbed ihMT. Such unique NMR lineshape properties are presumably occurring in myelin because of its specifically ordered, multilayered sheath structure.

View Article and Find Full Text PDF

Object: To propose a fast and robust acquisition and post-processing pipeline that is time-compatible with clinical explorations to obtain a proton density (ρ) map used as a reference for metabolic map normalization. This allows inter-subject and inter-group comparisons of magnetic resonance spectroscopic imaging (MRSI) data and longitudinal follow-up for single subjects.

Materials And Methods: A multi-echo T 2 (*) mapping sequence, the XEP sequence for B 1 (+) -mapping and Driven Equilibrium Single Pulse Observation of T 1-an optimized variable flip angle method for T 1 mapping used for both B 1 (-) -mapping and M 0 calculation-were used to determine correction factors leading to quantitative water proton density maps at 3T.

View Article and Find Full Text PDF

We have designed and constructed an experimental set-up allowing electrical stimulation of hindlimb mouse muscles and the corresponding force measurements at high-field (11.75T). We performed high-resolution multimodal MRI (including T2 -weighted imaging, angiography and diffusion) and analysed the corresponding MRI changes in response to a stimulation protocol.

View Article and Find Full Text PDF

Objective: In a previous study, we have shown that modulus post-processing is a simple and efficient tool to both phase correct and frequency align magnetic resonance (MR) spectra automatically. Furthermore, this technique also eliminates sidebands and phase distortions. The advantages of the modulus technique have been illustrated in several applications to brain proton MR spectroscopy.

View Article and Find Full Text PDF

The chronic administration of the β-adrenoreceptor agonist isoproterenol (IsoP) is used in animals to study the mechanisms of cardiac hypertrophy and failure associated with a sustained increase in circulating catecholamines. Time-dependent changes in myocardial blood flow (MBF), morphological and functional parameters were assessed in rats in vivo using multimodal cardiac MRI. Energy metabolism, oxidative stress and the nitric oxide (NO) pathway were evaluated in isolated perfused rat hearts following 7 days of treatment.

View Article and Find Full Text PDF

Phospholipids have long been known to be the principal constituents of the bilayer matrix of cell membranes. While the main function of cell membranes is to provide physical separation between intracellular and extracellular compartments, further biological and biochemical functions for phospholipids have been identified more recently, notably in cell signaling, cell recognition and cell-cell interaction, but also in cell growth, electrical insulation of neurons and many other processes. Therefore, accurate and efficient determination of tissue phospholipid composition is essential for our understanding of biological tissue function.

View Article and Find Full Text PDF