The brain is considered an immune privileged site due to the high selectivity of the blood-brain barrier which restricts the passage of molecules and cells into the brain parenchyma. Recent studies have highlighted active immunosurveillance mechanisms in the brain. Here we review emerging evidence for the contribution of innate lymphoid cells (ILCs) including natural killer (NK) cells to the immunosurveillance of brain cancers focusing on glioblastoma, one of the most aggressive and most common malignant primary brain tumors diagnosed in adults.
View Article and Find Full Text PDFThe misfolding of proteins and their accumulation in extracellular tissue compartments as insoluble amyloid or amorphous protein aggregates are a hallmark feature of many debilitating protein deposition diseases such as Alzheimer's disease, prion diseases, and type II diabetes. The plasminogen activation system is best known as an extracellular fibrinolytic system but was previously reported to also be capable of degrading amyloid fibrils. Here we show that amorphous protein aggregates interact with tissue-type plasminogen activator and plasminogen, via an exposed lysine-dependent mechanism, to efficiently generate plasmin.
View Article and Find Full Text PDFSerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS).
View Article and Find Full Text PDFα(2)-Macroglobulin (α(2)M) is an extracellular chaperone that inhibits amorphous and fibrillar protein aggregation. The reaction of α(2)M with proteases results in an 'activated' conformation, where the proteases become covalently-linked within the interior of a cage-like structure formed by α(2)M. This study investigates, the effect of activation on the ability of α(2)M to inhibit amyloid formation by Aβ(1-42) and I59T human lysozyme and shows that protease-activated α(2)M can act via two distinct mechanisms: (i) by trapping proteases that remain able to degrade polypeptide chains and (ii) by a chaperone action that prevents misfolded clients from continuing along the amyloid forming pathway.
View Article and Find Full Text PDFExtracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells.
View Article and Find Full Text PDF