Publications by authors named "Patrick Chappell"

To maintain normal functionality, it is necessary for a multicellular organism to generate robust responses to external temporal signals. However, the underlying mechanisms to coordinate the collective dynamics of cells remain poorly understood. Here we study the calcium activity of micropatterned biological neuron networks excited by periodic ATP stimuli.

View Article and Find Full Text PDF

Coordinated responses to environmental stimuli are critical for multicellular organisms. To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics within individual cells, cells must effectively exchange information with peers. However, the dynamics and mechanisms of collective information transfer driven by external signals are poorly understood.

View Article and Find Full Text PDF

Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol-water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects.

View Article and Find Full Text PDF

Conventional veterinary training emphasizes correct methodologies, potentially failing to exploit learning opportunities that arise as a result of errors. Error management training (EMT) encourages mistakes during low-stakes training, with the intention of modifying perceptions toward errors and using them to improve performance in unfamiliar scenarios (adaptive transfer). Herein, we aimed to determine the efficacy of EMT, supplemented by a metacognitive module, for veterinary students learning blood smear preparation and interpretation.

View Article and Find Full Text PDF

Veterinary medical education is a relatively small community with limited numbers of institutions, people, and resources widely dispersed geographically. The problems faced, however, are large-and not very different from the problems faced by (human) medical education. As part of an effort to share resources and build a community of practice around common issues, five colleges in the westernmost region of the United States came together to form a regional inter-institutional consortium.

View Article and Find Full Text PDF

Despite its fundamental importance, the educational mission of most schools of veterinary medicine receives far less recognition and support than the missions of research and discovery. This disparity is evident in promotion and tenure processes. Despite the frequent assertion that education is every college's core mission, there is a broad consensus that faculty are promoted primarily on the basis of meeting expectations relative to publications and grant funding.

View Article and Find Full Text PDF

Although errors can be a powerful impetus for learning, conventional pedagogy often emphasizes error-avoidance strategies that reward correct answers and disfavor mistakes. Error management training (EMT) takes an explicitly positive approach to errors, using them to create an active and self-directed learning environment. Using a surgical knot-tying model, we aimed to determine the efficacy of EMT among veterinary students with no prior surgical experience.

View Article and Find Full Text PDF

Background: Osteosarcoma strikes hundreds of people each year, of both advanced and younger ages, and is often terminal. Like many tumor types, these bone tumors will frequently undergo a neuroendocrine transition, utilizing autocrine and/or paracrine hormones as growth factors and/or promoters of angiogenesis to facilitate progression and metastasis. While many of these factors and their actions on tumor growth are characterized, some tumor-derived neuropeptides remain unexplored.

View Article and Find Full Text PDF

The decline of female reproductive function is an early phenotype of aging in humans, occurring only midway through the lifespan. Yet the number of women delaying pregnancy continues to rise in industrialized societies due to personal or socioeconomic circumstances, often resulting in subfertility or difficulty conceiving. There are few defined mechanisms associated with this etiology, and equally few effective therapies.

View Article and Find Full Text PDF

The International Species Information System has set forth an extensive database of reference intervals for zoologic species, allowing veterinarians and game park officials to distinguish normal health parameters from underlying disease processes in captive wildlife. However, several recent studies comparing reference values from captive and free-ranging animals have found significant variation between populations, necessitating the development of separate reference intervals in free-ranging wildlife to aid in the interpretation of health data. Thus, this study characterizes reference intervals for six biochemical analytes, eleven hematologic or immune parameters, and three hormones using samples from 219 free-ranging African lions ( Panthera leo ) captured in Kruger National Park, South Africa.

View Article and Find Full Text PDF

Context: Central precocious puberty (CPP) results from premature activation of the hypothalamic-pituitary-gonadal axis. Few genetic causes of CPP have been identified, with the most common being mutations in the paternally expressed imprinted gene MKRN3.

Objective: To identify the genetic etiology of CPP in a large multigenerational family.

View Article and Find Full Text PDF

In females, ovarian estradiol modulates kisspeptin (Kiss-1) synthesis to act as an obligatory regulator of downstream gonadotropin release in vivo, via stimulation of GnRH neurons. Changes in the ovarian condition are relayed to the neuroendocrine hypothalamus via two sexually dimorphic Kiss-1 populations, located in the anteroventral periventricular (AVPV) and arcuate nuclei, conveying estradiol-positive and -negative feedback, respectively. To elucidate how differential responsiveness to estradiol is mediated in these populations, we generated two kisspeptin-secreting cell lines from an adult kiss1-green fluorescent protein (GFP) female mouse.

View Article and Find Full Text PDF

Background: The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS).

View Article and Find Full Text PDF

Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009).

View Article and Find Full Text PDF

Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism.

View Article and Find Full Text PDF

Circadian clocks regulate multiple rhythms in mammalian tissues. In most organs core clock gene expression is oscillatory, with negative components Per and Cry peaking in antiphase to Bmal1. A notable exception is the testis, where clock genes seem nonrhythmic.

View Article and Find Full Text PDF

Although it is well established that the circadian clock regulates mammalian reproductive physiology, the molecular mechanisms by which this regulation occurs are not clear. The authors investigated the reproductive capacity of mice lacking Bmal1 (Arntl, Mop3), one of the central circadian clock genes. They found that both male and female Bmal1 knockout (KO) mice are infertile.

View Article and Find Full Text PDF

Orexin A, a recently discovered hypothalamic peptide, has been shown to have a stimulatory effect on release of gonadotropin-releasing hormone (GnRH) from rat hypothalamic explants in vitro. However, it is presently unclear whether in vivo this effect is mediated directly at the level of the GnRH neuron, or via multiple afferent neuronal connections. Therefore, in the present study, we investigated the direct action of orexin A on GnRH neurons using the immortalized GnRH-secreting GT1-7 hypothalamic cells.

View Article and Find Full Text PDF

Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion.

View Article and Find Full Text PDF