Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.
View Article and Find Full Text PDFBackground And Objectives: Few preclinical models of pseudomyxoma peritonei (PMP) have been developed, probably due to the tumor's low incidence and its peculiar characteristics of slow growth. Therefore, there is a need to develop more refined PMP models that better reflect its characteristics. The aim of the study is to develop a culture strategy to generate organoid models derived from PMP patient samples.
View Article and Find Full Text PDFGraphene Oxide (GO) has been shown to increase the expression of key cartilage genes and matrix components within 3D scaffolds. Understanding the mechanisms behind the chondroinductive ability of GO is critical for developing articular cartilage regeneration therapies but remains poorly understood. The objectives of this work were to elucidate the effects of GO on the key chondrogenic signalling pathway - TGFβ and identify the mechanism through which signal activation is achieved in human chondrocytes.
View Article and Find Full Text PDFCell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions.
View Article and Find Full Text PDFEndocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells.
View Article and Find Full Text PDFPatrick T. Caswell discusses work from Bryant and colleagues (2023. J.
View Article and Find Full Text PDFModulation of integrin function is required in many physiological and pathological settings, such as angiogenesis and cancer. Integrin allosteric changes, clustering, and trafficking cooperate to regulate cell adhesion and motility on extracellular matrix proteins via mechanisms that are partly defined. By exploiting four monoclonal antibodies recognizing distinct conformational epitopes, we show that in endothelial cells (ECs), the extracellular βI domain, but not the hybrid or I-EGF2 domain of active β1 integrins, promotes their FAK-regulated clustering into tensin 1-containing fibrillar adhesions and impairs their endocytosis.
View Article and Find Full Text PDFCRISPR technology has made generation of gene knock-outs widely achievable in cells. However, once inactivated, their re-activation remains difficult, especially in diploid cells. Here, we present DExCon (oxycycline-mediated endogenous gene pression trol), DExogron (DExCon combined with auxin-mediated targeted protein degradation), and LUXon (light responsive DExCon) approaches which combine one-step CRISPR-Cas9-mediated targeted knockin of fluorescent proteins with an advanced Tet-inducible TRE3GS promoter.
View Article and Find Full Text PDFUbiquitin modification controls protein stability and cargo trafficking, and in this issue Duncan et al. (2022. J.
View Article and Find Full Text PDFISG15 is an ubiquitin-like modifier that is associated with reduced survival rates in breast cancer patients. The mechanism by which ISG15 achieves this however remains elusive. We demonstrate that modification of Rab GDP-Dissociation Inhibitor Beta (GDI2) by ISG15 (ISGylation) alters endocytic recycling of the EGF receptor (EGFR) in non-interferon stimulated cells using CRISPR-knock out models for ISGylation.
View Article and Find Full Text PDFMembrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs) are transport vesicles that are involved in multiple membrane trafficking steps, including the recycling pathway. The only known marker for INVs is tumor protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family.
View Article and Find Full Text PDFCell migration in 3D microenvironments is a complex process which depends on the coordinated activity of leading edge protrusive force and rear retraction in a push-pull mechanism. While the potentiation of protrusions has been widely studied, the precise signalling and mechanical events that lead to retraction of the cell rear are much less well understood, particularly in physiological 3D extra-cellular matrix (ECM). We previously discovered that rear retraction in fast moving cells is a highly dynamic process involving the precise spatiotemporal interplay of mechanosensing by caveolae and signalling through RhoA.
View Article and Find Full Text PDFMembrane-cortex attachment plays key roles in controlling cell shape and integrity. In this issue of Developmental Cell, Welf et al. describe a new function for membrane-actin tethering in controlling where and when cells initiate new protrusions.
View Article and Find Full Text PDFThe last two decades of research into integrin trafficking has revealed fascinating insight into the function of integrin receptors, particularly in the context of cell invasion and migration in cancer. Deregulation in the trafficking pathways of integrin receptors contributes to a variety of pathological conditions including cancer, and in fact, altered endocytic trafficking of these receptors has been shown to drive transformation and tumor progression. Being able to experimentally measure integrin internalization, recycling and cell surface levels are vital for determining the role integrins play in health and disease.
View Article and Find Full Text PDFThis study is about fine tuning the targeting capacity of peptide-decorated nanoparticles to discriminate between cells that express different integrin make-ups. Using microfluidic-assisted nanoprecipitation, we have prepared poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles with a PEGylated surface decorated with two different arginine-glycine-aspartic acid (RGD) peptides: one is cyclic (RGDFC) and has specific affinity towards αβ integrin heterodimers; the other is linear (RGDSP) and is reported to bind equally αβ and αβ. We have then evaluated the nanoparticle internalization in two cell lines with a markedly different integrin fingerprint: ovarian carcinoma A2780 (almost no αβ, moderate in αβ) and glioma U87MG (very high in αβ, moderate/high in αβ).
View Article and Find Full Text PDFIn development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension.
View Article and Find Full Text PDFCurr Opin Cell Biol
February 2019
Cell migration is a critical process that underpins a number of physiological and pathological contexts such as the correct functioning of the immune system and the spread of metastatic cancer cells. Central to this process are the Rho family of GTPases, which act as core regulators of cell migration. Rho GTPases are molecular switches that associate with lipid membranes and act to choreograph molecular events that underpin cell migration.
View Article and Find Full Text PDFRho GTPases such as the canonical Rac1 and RhoA are embedded within complex networks requiring the precise spatiotemporal balance of GEFs, GAPs, upstream regulators, growth factors, and downstream effectors. A modeling approach based on Boolean logical networks is becoming an increasingly relied-upon tool to harness this complexity and elucidate further details regarding Rho GTPase signaling. In this methods chapter we describe how to initially create appropriately sized networks based on literature evidence; formalize these networks with reactions based on Boolean logical operators; implement the network into appropriate simulation software (CellNetAnalyzer); and finally perform simulations and make novel, testable predictions via in silico knockouts.
View Article and Find Full Text PDFCell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms.
View Article and Find Full Text PDFThe article "JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells", written by "Patrick T. Caswell, Martin Dickens", was originally published electronically on the publisher's internet portal https://link.springer.
View Article and Find Full Text PDFThe JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons.
View Article and Find Full Text PDFThe hormone prolactin promotes lactational differentiation of mammary epithelial cells (MECs) via its cognate receptor and the downstream JAK2-STAT5a signalling pathway. In turn this regulates transcription of milk protein genes. Prolactin signalling depends on a cross-talk with basement membrane extracellular matrix (ECM) via β1 integrins which activate both ILK and Rac1 and are required for STAT5a activation and lactational differentiation.
View Article and Find Full Text PDFThe Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart.
View Article and Find Full Text PDF