Publications by authors named "Patrick C Tapping"

Two strategies for improving solar energy efficiencies, triplet fusion and singlet fission, rely on the details of triplet-triplet interactions. In triplet fusion, there are several steps, each of which is a possible loss mechanism. In solution, the parameters describing triplet fusion collisions are difficult to inspect.

View Article and Find Full Text PDF

Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, , to study the dependence of SF in TIPS-Pn on .

View Article and Find Full Text PDF

Photosynthesis has been shown to be a highly efficient process for energy transfer in plants and bacteria. Like natural photosynthetic systems, the artificial light harvesting complex (LHC) BODIPY pillar[5]arene exhibits Förster resonance energy transfer (FRET). However, extensive characterisation of the BODIPY pillar[5]arene LHC to determine its suitability as an artificial LHC has yet to occur.

View Article and Find Full Text PDF

Singlet fission (SF), a process that produces two triplet excitons from one singlet exciton, has attracted recent interest for its potential to circumvent the detailed-balance efficiency limit of single-junction solar cells. For the potential of SF to be fully realized, accurate assignment and quantification of SF is necessary. Intersystem crossing (ISC) is another process of singlet to triplet conversion that is important to distinguish from SF to avoid either over- or under-estimation of SF triplet production.

View Article and Find Full Text PDF

TIPS-pentacene is a small-molecule organic semiconductor that is widely used in optoelectronic devices. It has been studied intensely owing to its ability to undergo singlet fission. In this study, we aim to develop further understanding of the coupling between the electronic and nuclear degrees of freedom of TIPS-pentacene (TIPS-Pn).

View Article and Find Full Text PDF

In two-dimensional electronic spectroscopy (2DES), precise control of the arrival time of ultrashort laser pulses is critical to correlating the molecular states that are accessed in the experiment. In this work, we demonstrate a 2D electronic spectrometer design with an interferometric phase stability of ∼λ/250 at 600 nm. First, we present a new method for controlling pulse delay times based on transmission through pairs of optical flats rotated perpendicular to the beam propagation direction.

View Article and Find Full Text PDF

Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear.

View Article and Find Full Text PDF

The carrier dynamics of lead sulphide quantum dot (PbS QD) drop cast films and closely packed ordered Langmuir-Blodgett films are studied with ultra-fast femtosecond transient absorption spectroscopy. The photo-induced carrier temperature is extracted from transient absorption spectra and monitored as a function of time delay. The cooling dynamics of carriers in PbS QDs suggest a reduction of the carrier energy loss rate at longer time delays through the retardation of the longitudinal optical (LO) phonon decay due to partial heating of acoustic phonon modes.

View Article and Find Full Text PDF

The excited states of conjugated polymers play a central role in their applications in organic solar photovoltaics. The delocalized excited states of conjugated polymers are short-lived (τ < 40 fs) but are imperative in the photovoltaic properties of these materials. Photoexcitation of poly(3-hexylthiophene) (P3HT) induces an excited-state absorption band, but the transitions that are involved are not well understood.

View Article and Find Full Text PDF

The dynamics of high-energy excitons of poly(3-hexylthiophene) (P3HT) are shown to consist of torsional relaxation and exciton dissociation to form free carriers. In this work, we use pump-push-probe femtosecond transient absorption spectroscopy to study the highly excited states of P3HT in solution. P3HT excitons are generated using a pump pulse (400 nm) and allowed to relax to the lowest-lying excited state before re-excitation using a push pulse (900 or 1200 nm), producing high-energy excitons that decay back to the original excited state with both subpicosecond (0.

View Article and Find Full Text PDF