We have previously shown that human and murine breast extracellular matrix (ECM) can significantly impact cellular behavior, including stem cell fate determination. It has been established that tissue-specific extracellular matrix from the central nervous system has the capacity to support neuronal survival. However, the characterization of its influence on stem cell differentiation and its adaptation to robust 3D culture models is underdeveloped.
View Article and Find Full Text PDFThe extracellular matrix (ECM) of tissues is an important mediator of cell function. Moreover, understanding cellular dynamics within their specific tissue context is also important for developmental biology, cancer research, and regenerative medicine. However, robust in vitro models that incorporate tissue-specific microenvironments are lacking.
View Article and Find Full Text PDFThe normal mammary microenvironment can suppress tumorigenesis and redirect cancer cells to adopt a normal mammary epithelial cell fate in vivo. Understanding of this phenomenon offers great promise for novel treatment and detection strategies in cancer, but current model systems make mechanistic insights into the process difficult. We have recently described a low-cost bioprinting platform designed to be accessible for basic cell biology laboratories.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors reported a typesetting error in the spelling of the second author's name.
View Article and Find Full Text PDFBackground: Standard three-dimensional (3D) in vitro culture techniques, such as those used for mammary epithelial cells, rely on random distribution of cells within hydrogels. Although these systems offer advantages over traditional 2D models, limitations persist owing to the lack of control over cellular placement within the hydrogel. This results in experimental inconsistencies and random organoid morphology.
View Article and Find Full Text PDFHuntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the gene. The mechanisms underlying HD-associated cellular dysfunction in pluripotency and neurodevelopment are poorly understood. We had previously identified downregulation of selected DNA repair genes in HD fibroblasts relative to wild-type fibroblasts, as a result of promoter hypermethylation.
View Article and Find Full Text PDFInterest into the cellular biology of human tonsillar crypts has grown in recent years because it is now known to be the site of origin of most human papilloma virus (HPV) induced oropharyngeal squamous cell carcinomas (OPSCC). Despite the interest, still relatively little is known regarding the cellular hierarchy and dynamics of this anatomical subsite. Here we evaluate normal tonsillar crypts for expression of putative stem cell markers.
View Article and Find Full Text PDFObjective: Picosecond pulse electric fields (psPEF) have the potential to elicit functional changes in mammalian cells in a non-contact manner. Such electro-manipulation of pluripotent and multipotent cells could be a tool in both neural interface and tissue engineering. Here, we describe the potential of psPEF in directing neural stem cells (NSCs) gene expression, metabolism, and proliferation.
View Article and Find Full Text PDFThe accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing.
View Article and Find Full Text PDFWhile induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs).
View Article and Find Full Text PDFThe precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing.
View Article and Find Full Text PDFHuntington disease (HD) is an autosomal dominantly inherited disease that exhibits genetic anticipation of affected progeny due to expansions of a trinucleotide repeat (TNR) region within the HTT gene. DNA repair machinery is a known effector of TNR instability; however, the specific defects in HD cells that lead to TNR expansion are unknown. We hypothesized that HD cells would be deficient in DNA repair gene expression.
View Article and Find Full Text PDFData are accumulating to support a role for adipose-derived mesenchymal stem cells (MSCs) in breast cancer progression; however, to date most studies have relied on adipose MSCs from non-breast sources. There is a particular need to investigate the role of adipose MSCs in the pathogenesis of basal-like breast cancer, which develops at a disproportionate rate in pre-menopausal African-American women with a gain in adiposity. The aim of this study was to better understand how breast adipose MSCs (bMSCs) contribute to the progression of basal-like breast cancers by relying on isogenic HMT-3255 S3 (pre-invasive) and T4-2 (invasive) human cells that upon transplantation into nude mice resemble this tumor subtype.
View Article and Find Full Text PDFThe discovery of adipose-derived stromal cells (ASCs) has created many opportunities for the development of patient-specific cell-based replacement therapies. We have isolated multiple cell strains of ASCs from various anatomical sites (abdomen, arms/legs, breast, buttocks), indicating widespread distribution of ASCs throughout the body. Unfortunately, there exists a general lack of agreement in the literature as to their "stem cell" characteristics.
View Article and Find Full Text PDFBasement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture.
View Article and Find Full Text PDFIsolation of adipose-derived stem cells (ASCs) typically involves 8+ hours of intense effort, requiring specialized equipment and reagents. Here, we present an improved technique for isolating viable populations of mesenchymal stem cells from lipoaspirate saline fractions within 30 minutes. Importantly, the cells exhibit remarkable similarities to those obtained using the traditional isolation protocols, in terms of their multipotent differentiation potential and immunophenotype.
View Article and Find Full Text PDFTelomerase, a ribonucleoprotein enzyme minimally composed of an RNA template (human telomerase RNA) and a catalytically active protein subunit (human telomerase reverse transcriptase), synthesizes telomeric repeats onto chromosome ends and is obligatory for continuous tumor cell proliferation. Telomerase is an attractive anticancer therapeutic target because its activity is present in >90% of human cancers, including >95% of breast carcinomas. Traditional chemotherapies lack the ability to effectively control and cure breast cancer, in part because residual cells are often resistant to DNA-damaging modalities.
View Article and Find Full Text PDF