Publications by authors named "Patrick Briddon"

Using density functional theory approaches, we follow the sequential addition of CF functional groups to the surface of the metallic endofullerene species Gd@C. The presence of gadolinium in the interior of the cage strongly influences the addition sequence. The calculations are able to successfully identify end points in the addition sequence at Gd@C(CF) , = 3 and two isomers at = 5, in predictive agreement with experiment.

View Article and Find Full Text PDF

Aiming to better understand the reactivity of graphene-based materials, the present work employs density functional theory that provides detailed information about spin-density distributions for single and contiguous pairs of carbene-like active sites. In order to examine the extent to which different models, methodologies, and approximations affect the outcome, our calculations employ the AIMPRO, QuantumEspresso and Gaussian program packages. Models are in the form of polycyclic aromatic hydrocarbons (PAHs) and graphene nanoribbons (GNRs), both isolated and within supercells with periodic boundary conditions.

View Article and Find Full Text PDF

In recent years, a plethora of theoretical carbon allotropes have been proposed, none of which has been experimentally isolated. We discuss here criteria that should be met for a new phase to be potentially experimentally viable. We take as examples Haeckelites, 2D networks of sp(2)-carbon-containing pentagons and heptagons, and "penta-graphene," consisting of a layer of pentagons constructed from a mixture of sp(2)- and sp(3)-coordinated carbon atoms.

View Article and Find Full Text PDF

Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties.

View Article and Find Full Text PDF

The future exploitation of the exceptional properties of nanocrystal (NC) thin films deposited from liquid dispersions of nanoparticles relies upon our ability to produce films with improved electrical properties by simple and inexpensive means. Here, we demonstrate that the electronic conduction of solution-processed NC films can be strongly enhanced without the need of postdeposition treatments, via specific molecules adsorbed at the surfaces of adjacent NCs. This effect is demonstrated for Si NC films doped with the strong molecular oxidizing agent tetrafluoro-tetracyanoquinodimethane (F4-TCNQ).

View Article and Find Full Text PDF

The formation of extended defects in graphene from the coalescence of individual mobile vacancies can significantly alter its mechanical, electrical and chemical properties. We present the results of ab initio simulations which demonstrate that the strain created by multi-vacancy complexes in graphene determine their overall growth morphology when formed from the coalescence of individual mobile lattice vacancies. Using density functional theory, we map out the potential energy surface for the motion of mono-vacancies in the vicinity of multi-vacancy defects.

View Article and Find Full Text PDF

First-principles calculations are used to investigate the structure, electronic and optical properties of silicon nanocystals with chlorine-passivated surface. The nanocrystals considered were approximately spherical, with diameters between 1.5 and 3.

View Article and Find Full Text PDF

The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

View Article and Find Full Text PDF

Cross-sectional area and volume become difficult to define as material dimensions approach the atomic scale. This limits the transferability of macroscopic concepts such as Young's modulus. We propose a new volume definition where the enclosed nanosheet or nanotube average electron density matches that of the parent layered bulk material.

View Article and Find Full Text PDF

We demonstrate that free graphene sheet edges can curl back on themselves, reconstructing as nanotubes. This results in lower formation energies than any other nonfunctionalized edge structure reported to date in the literature. We determine the critical tube size and formation barrier and compare with density functional simulations of other edge terminations including a new reconstructed Klein edge.

View Article and Find Full Text PDF

The low mass of hydrogen leads to highly localised, high-frequency vibrational modes associated with H-containing defects in crystalline materials. In addition to vibrational spectroscopy, the presence of hydrogen in diamond has been identified from several experimental techniques. In particular, paramagnetic resonance shows that H is often associated with lattice vacancies, but in many cases the microscopic structure of the defects remains to be determined.

View Article and Find Full Text PDF

The tetrahedral bis(adeninyl)-Cu(I) complex, , self-associates in polar solvent through complementary hydrogen-bonding interactions and appears to mimic the natural assembly of duplex DNA.

View Article and Find Full Text PDF

We study the structure and vibrational modes of a wide range of oxohalides of vanadium (VOX(n)Y(m); X, Y = F, Cl, Br, I; n, m = 0-3, n + m < or = 3). The results agree well with experimental results for VOCl(3) and VOF(3) and suggest reassignment of the experimentally observed VOF to VOF(2). We provide new assignments for various experimental modes, identifying several intermediates (VOBr(2), VOBr) and mixed structures (e.

View Article and Find Full Text PDF

Calculations of fluorine binding and migration on carbon nanotube surfaces show that fluorine forms varying surface superlattices at increasing temperatures. The ordering transition is controlled by the surface migration barrier for fluorine atoms to pass through next neighbor sites on the nanotube, explaining the transition from semi-ionic low coverage to covalent high coverage fluorination observed experimentally for gas phase fluorination between 200 and 250 degrees C. The effect of solvents on fluorine binding and surface diffusion is explored.

View Article and Find Full Text PDF