Tethering factors play a critical role in deciphering the correct combination of vesicle and target membrane, before SNARE complex formation and membrane fusion. The exocyst plays a central role in tethering post-Golgi vesicles to the plasma membrane, although the mechanism by which this occurs is poorly understood. We recently established an assay for measuring exocyst-mediated vesicle tethering in vitro and we have adapted this assay to examine the ability of exocyst to tether vesicles in an asymmetric manner.
View Article and Find Full Text PDFA doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their post-graduate professional roles. We report the outcomes of this program over a five-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences.
View Article and Find Full Text PDFThe exocyst imparts spatial control during exocytic vesicle tethering through its interactions with proteins and lipids on the vesicle and the plasma membrane. One such interaction is with the vesicle tether Sro7, although the outcome of this interaction is poorly understood. Here, we describe how Sro7 binding to the Exo84 subunit results in activation of the exocyst complex which leads to an increase in avidity for the Rab GTPase Sec4 and an increase in exocyst-mediated vesicle tethering.
View Article and Find Full Text PDFSchizophrenia is a severe and heritable neuropsychiatric disorder, which arises due to a combination of common genetic variation, rare loss of function variation, and copy number variation. Functional genomic evidence has been used to identify candidate genes affected by this variation, which revealed biological pathways that may be disrupted in schizophrenia. Understanding the contributions of these pathways are critical next steps in understanding schizophrenia pathogenesis.
View Article and Find Full Text PDF, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain.
View Article and Find Full Text PDFPhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths.
View Article and Find Full Text PDFNeuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane.
View Article and Find Full Text PDFThe exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering.
View Article and Find Full Text PDFMultisite phosphorylation of proteins is a common mechanism for signal integration and amplification in eukaryotic signaling networks. Proteins are commonly phosphorylated at multiple sites in an ordered manner, whereby phosphorylation by one kinase primes the substrate by generating a recognition motif for a second kinase. Here we show that substrate priming promotes phosphorylation by Kin1 and Kin2, kinases that regulate cell polarity, exocytosis, and the endoplasmic reticulum (ER) stress response.
View Article and Find Full Text PDFThe tomosyn/Sro7 family is thought to play an important role in cell surface trafficking both as an effector of Rab family GTPases and as a regulator of plasma-membrane SNARE function. Recent work has determined the binding site of GTP-bound Sec4 on Sro7. Here we examine the effect of mutations in Sro7 that block Sec4 binding in determining the role of this interaction in Sro7 function.
View Article and Find Full Text PDFPhD recipients acquire discipline-specific knowledge and a range of relevant skills during their training in the life sciences, physical sciences, computational sciences, social sciences, and engineering. Empirically testing the applicability of these skills to various careers held by graduates will help assess the value of current training models. This report details results of an Internet survey of science PhDs (n = 8099) who provided ratings for fifteen transferrable skills.
View Article and Find Full Text PDFMembers of the tomosyn/Lgl/Sro7 family play important roles in vesicle trafficking and cell polarity in eukaryotic cells. The yeast homologue, Sro7, is believed to act as a downstream effector of the Sec4 Rab GTPase to promote soluble N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) assembly during Golgi-to-cell surface vesicle transport. Here we describe the identification of a Sec4 binding site on the surface of Sro7 that is contained within a cleft created by the junction of two adjacent β-propellers that form the core structure of Sro7.
View Article and Find Full Text PDFIntracellular traffic in yeast between the Golgi and the cell surface is mediated by vesicular carriers that tether and fuse in a fashion that depends on the function of the Rab GTPase, Sec4. Overexpression of either of two Sec4 effectors, Sro7 or Sec15, results in the formation of a cluster of post-Golgi vesicles within the cell. Here, we describe a novel assay that recapitulates post-Golgi vesicle clustering in vitro utilizing purified Sro7 and vesicles isolated from late secretory mutants.
View Article and Find Full Text PDFVesicle delivery of Cdc42 has been proposed as an important mechanism for generating and maintaining Cdc42 polarity at the plasma membrane. This mechanism requires the density of Cdc42 on secretory vesicles to be equal to or higher than the plasma membrane polarity cap. Using a novel method to estimate Cdc42 levels on post-Golgi secretory vesicles in intact yeast cells, we: (1) determined that endocytosis plays an important role in Cdc42's association with secretory vesicles (2) found that a GFP-tag placed on the N-terminus of Cdc42 negatively impacts this vesicle association and (3) quantified the surface densities of Cdc42 on post-Golgi vesicles which revealed that the vesicle density of Cdc42 is three times more dilute than that at the polarity cap.
View Article and Find Full Text PDFA new study describes a novel regulatory event that results in the inhibition of exocytic transport of a specific class of Golgi-derived vesicles during mitosis. The mechanism of inhibition is shown to involve direct phosphorylation of a subunit of the exocyst by a specific cyclin-dependent kinase complex.
View Article and Find Full Text PDFWe here report the first comparative proteomics of purified yeast post-Golgi vesicles (PGVs). Vesicle samples isolated from PGV-accumulating sec6-4 mutants were treated with isobaric tags (iTRAQ) for subsequent quantitative tandem mass spectrometric analysis of protein content. After background subtraction, a total of 66 vesicle-associated proteins were identified, including known or assumed vesicle residents as well as a fraction not previously known to be PGV associated.
View Article and Find Full Text PDFLgl family members play an important role in the regulation of cell polarity in eukaryotic cells. The yeast homologues Sro7 and Sro77 are thought to act downstream of the Rab GTPase Sec4 to promote soluble N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) function in post-Golgi transport. In this article, we characterize the interaction between Sro7 and the type V myosin Myo2 and show that this interaction is important for two distinct aspects of Sro7 function.
View Article and Find Full Text PDFRho family GTPases are critical regulators in determining and maintaining cell polarity. In Saccharomyces cerevisiae, Rho3 and Cdc42 play important but distinct roles in regulating polarized exocytosis and overall polarity. Cdc42 is highly polarized during bud emergence and is specifically required for exocytosis at this stage.
View Article and Find Full Text PDFAt steady state, most Rho GTPases are bound in the cytosol to Rho guanine nucleotide dissociation inhibitors (RhoGDIs). RhoGDIs have generally been considered to hold Rho proteins passively in an inactive state within the cytoplasm. Here we describe an evolutionarily conserved mechanism by which RhoGDI1 controls the homeostasis of Rho proteins in eukaryotic cells.
View Article and Find Full Text PDFFormation of the epithelial barrier and apico-basal cell polarity represent two characteristics and mutually dependent features of differentiated epithelial monolayers. They are controlled by special adhesive structures, tight junctions (TJs), and polarity protein complexes that define the apical and the basolateral plasma membrane. The functional interplay between TJs and polarity complexes remains poorly understood.
View Article and Find Full Text PDFThe Rho3 and Cdc42 members of the Rho GTPase family are important regulators of exocytosis in yeast. However, the precise mechanism by which they regulate this process is controversial. Here, we present evidence that the Exo70 component of the exocyst complex is a direct effector of both Rho3 and Cdc42.
View Article and Find Full Text PDFTrends Cell Biol
September 2008
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity.
View Article and Find Full Text PDFExocytosis is the major mechanism by which new membrane components are delivered to the cell surface. In most, if not all, eukaryotic cells this is also a highly spatially regulated process that is tightly coordinated with the overall polarity of a cell. The Rho/Cdc42 family of GTPases and the lethal giant larvae/Sro7 family are two highly conserved families of proteins which appear to have dual functions both in cell polarity and exocytosis.
View Article and Find Full Text PDFPolarized exocytosis requires coordination between the actin cytoskeleton and the exocytic machinery responsible for fusion of secretory vesicles at specific sites on the plasma membrane. Fusion requires formation of a complex between a vesicle-bound R-SNARE and plasma membrane Qa, Qb and Qc SNARE proteins. Proteins in the lethal giant larvae protein family, including lethal giant larvae and tomosyn in metazoans and Sro7 in yeast, interact with Q-SNAREs and are emerging as key regulators of polarized exocytosis.
View Article and Find Full Text PDFThe SRO7/SOP1 encoded tumor suppressor homologue of Saccharomyces cerevisiae is required for maintenance of ion homeostasis in cells exposed to NaCl stress. Here we show that the NaCl sensitivity of the sro7Delta mutant is due to defective sorting of Ena1p, the main sodium pump in yeast. On exposure of sro7Delta mutants to NaCl stress, Ena1p fails to be targeted to the cell surface, but is instead routed to the vacuole for degradation via the multivesicular endosome pathway.
View Article and Find Full Text PDF