Publications by authors named "Patrick Bohn"

Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear.

View Article and Find Full Text PDF

Background: Direct RNA sequencing (dRNA-seq) on the Oxford Nanopore Technologies (ONT) platforms can produce reads covering up to full-length gene transcripts, while containing decipherable information about RNA base modifications and poly-A tail lengths. Although many published studies have been expanding the potential of dRNA-seq, its sequencing accuracy and error patterns remain understudied.

Results: We present the first comprehensive evaluation of sequencing accuracy and characterisation of systematic errors in dRNA-seq data from diverse organisms and synthetic in vitro transcribed RNAs.

View Article and Find Full Text PDF

How do segmented RNA viruses correctly recruit their genome has yet to be clarified. Bluetongue virus is a double-stranded RNA virus with 10 segments of different sizes, but it assembles its genome in single-stranded form through a series of specific RNA-RNA interactions prior to packaging. In this study, we determined the structure of each BTV transcript, individually and in different combinations, using 2'-hydroxyl acylation analysed by primer extension and mutational profiling (SHAPE-MaP).

View Article and Find Full Text PDF

RNA structure determination is essential to understand how RNA carries out its diverse biological functions. In cells, RNA isoforms are readily expressed with partial variations within their sequences due, for example, to alternative splicing, heterogeneity in the transcription start site, RNA processing or differential termination/polyadenylation. Nanopore dimethyl sulfate mutational profiling (Nano-DMS-MaP) is a method for in situ isoform-specific RNA structure determination.

View Article and Find Full Text PDF

Genome-wide measurements of RNA structure can be obtained using reagents that react with unpaired bases, leading to adducts that can be identified by mutational profiling on next-generation sequencing machines. One drawback of these experiments is that short sequencing reads can rarely be mapped to specific transcript isoforms. Consequently, information is acquired as a population average in regions that are shared between transcripts, thus blurring the underlying structural landscape.

View Article and Find Full Text PDF

The arenavirus nucleoprotein (NP) plays an important role in the virus' ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.

View Article and Find Full Text PDF

RNA dimerization is the noncovalent association of two human immunodeficiency virus-1 (HIV-1) genomes. It is a conserved step in the HIV-1 life cycle and assumed to be a prerequisite for binding to the viral structural protein Pr55 during genome packaging. Here, we developed functional analysis of RNA structure-sequencing (FARS-seq) to comprehensively identify sequences and structures within the HIV-1 5' untranslated region (UTR) that regulate this critical step.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses selectively choose their genomic RNA from a mix of different RNAs to create infectious particles, highlighting the importance of specific RNA structures in this process.
  • The review covers how packaging signals are formed through base pairings and interactions between viral and host RNAs, crucial for proper genome assembly.
  • The regulation of genome packaging is influenced by RNA's biophysical properties, which can also affect viral evolution over time.
View Article and Find Full Text PDF

Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs).

View Article and Find Full Text PDF

Arenaviruses cause several viral hemorrhagic fevers endemic to Africa and South America. The respective causative agents are classified as biosafety level (BSL) 4 pathogens. Unlike for most other BSL4 agents, for the New World arenavirus Junín virus (JUNV) both a highly effective vaccination (Candid#1) and a post-exposure treatment, based on convalescent plasma transfer, are available.

View Article and Find Full Text PDF

Immunogenetic data from wild primate populations have been difficult to obtain, due to logistic and methodological constraints. We applied a well-characterized deep sequencing method for MHC I typing, developed for macaques, to a population of wild red colobus to assess the feasibility of identifying MHC I-A/B haplotypes. Ten individuals produced sufficient data from blood and tissue samples to assign haplotypes.

View Article and Find Full Text PDF

To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective.

View Article and Find Full Text PDF

Non-human primate (NHP) models of tuberculosis (TB) immunity and pathogenesis, especially rhesus and cynomolgus macaques, are particularly attractive because of the high similarity of the human and macaque immune systems. However, little is known about the MHC class II epitopes recognized in macaques, thus hindering the establishment of immune correlates of immunopathology and protective vaccination. We characterized immune responses in rhesus macaques vaccinated against and/or infected with Mycobacterium tuberculosis (Mtb), to a panel of antigens currently in human vaccine trials.

View Article and Find Full Text PDF

Unlabelled: The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes.

View Article and Find Full Text PDF

Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC-peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research.

View Article and Find Full Text PDF

The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort.

View Article and Find Full Text PDF

Epidemiological studies have linked the high prevalence rates of IgE-mediated allergic diseases to an increase in exposure to traffic-related air pollutants such as diesel exhaust particles (DEPs). There is growing experimental evidence that organic compounds of DEPs, predominantly polycyclic aromatic hydrocarbons (PAHs), participate in the development and maintenance of allergic airway diseases. In this study we investigated the impact of organic extracts of urban aerosol (AERex) containing various PAH concentrations on the activation of human basophils.

View Article and Find Full Text PDF