Publications by authors named "Patrick Berry"

Objective: The Espace Santé Jeune (ESJ) is a health education project conducted since 2008 in a French middle school. Pupils are invited to share their experiences about health in group speaking sessions led by a general practitioner (GP) accompanied by a municipal youth worker or a teacher. This study, based on the experience of the actors, seeks to understand the role of physicians and to identify the levers of the project.

View Article and Find Full Text PDF

Unlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse.

View Article and Find Full Text PDF

A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling chromium laser technology utilizing the thermo-mechanical advantages of Cr:ZnS over alternative transition metal doped II-VI semiconductor laser materials. The laser provided a maximum power of 101 mW of CW output at 2333 nm limited only by the available pump power. A maximum slope efficiency of 20% was demonstrated.

View Article and Find Full Text PDF

We report a Cr:ZnSe channel waveguide laser operating at 2486 nm. A maximum power output of 285 mW is achieved and slope efficiencies as high as 45% are demonstrated. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample.

View Article and Find Full Text PDF

We report the demonstration of high-power (840 mW) continuous-wave laser oscillation from Fe2+ ions in zinc selenide. The output spectrum of the Fe:ZnSe laser had a line-center near 4140 nm with a linewidth of 80 nm. The beam quality was measured to be M2≤1.

View Article and Find Full Text PDF