Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid.
View Article and Find Full Text PDFIn mammalian cells RACK1 serves as a scaffold protein that has a role in integrating inputs from different signalling pathways and affects translation through association with ribosomes. Ustilago maydis contains a seven-WD40 repeat motif protein designated Rak1, which shows 68% identity to RACK1 and 51% identity to Asc1p of Saccharomyces cerevisiae. An asc1 mutant could be complemented by introduction of U.
View Article and Find Full Text PDFOn the plant surface the dimorphic fungus Ustilago maydis switches from budding to hyphal growth and differentiates appressoria. To get more insight into these highly regulated processes we report on the role of a conserved Ser/Thr kinase of the AGC kinase family, Aga1. U.
View Article and Find Full Text PDFUstilago maydis is able to initiate pathogenic development after fusion of two haploid cells with different mating type. On the maize leaf surface, the resulting dikaryon switches to filamentous growth, differentiates appressoria and penetrates the host. Here, we report on the plant signals required for filament formation and appressorium development in U.
View Article and Find Full Text PDFMicrobiology (Reading)
September 2006
To analyse the role of trehalose as stress protectant and carbon storage compound in the grey mould fungus Botrytis cinerea, mutants defective in trehalose-6-phosphate synthase (TPS1) and neutral trehalase (TRE1) were constructed. The Deltatps1 mutant was unable to synthesize trehalose, whereas the Deltatre1 mutant showed elevated trehalose levels compared to the wild-type and was unable to mobilize trehalose during conidial germination. Both mutants showed normal vegetative growth and were not affected in plant pathogenicity.
View Article and Find Full Text PDFConidial germination of the grey mould fungus Botrytis cinerea was found to be induced by different chemical and physical signals, namely the amount and quality of nutrients as well as the hydrophobicity and rigidity of the surface. A B. cinerea Deltabcg3 mutant disrupted in the Galpha3 subunit of the heterotrimeric G protein was specifically defective in germination induced by carbon sources.
View Article and Find Full Text PDF