Ecological restoration is an essential strategy for mitigating the current biodiversity crisis, yet restoration actions are costly. We used systematic conservation planning principles to design an approach that prioritizes restoration sites for birds and tested it in a riparian forest restoration program in the Colorado River Delta. Restoration goals were to maximize the abundance and diversity of 15 priority birds with a variety of habitat preferences.
View Article and Find Full Text PDFPremise: Riparian plants can exhibit intraspecific phenotypic variability across the landscape related to temperature and flooding gradients. Phenotypes that vary across a climate gradient are often partly genetically determined and may differ in their response to inundation. Changes to inundation patterns across a climate gradient could thus result in site-specific inundation responses.
View Article and Find Full Text PDFIncreasing demand for river water now conflicts with an increasing desire to maintain riparian ecosystems. Efficiently managing river flows for riparian vegetation requires an understanding of the time scale of flow effects, but this information is limited by the absence of long-term studies of vegetation change in response to flow variation. To investigate the influence of short- and long-term flow variability and dam operation on riparian vegetation, we determined the occurrence of 107 plant species in 133 permanent plots of known inundating discharge along the Gunnison River in Colorado on five different occasions between 1990 and 2013.
View Article and Find Full Text PDFLarge dams and their removal can profoundly affect riparian ecosystems by altering flow and sediment regimes, hydrochory, and landform dynamics, yet few studies have documented these effects on downstream plant communities. Ecological theory and empirical results suggest that by altering disturbance regimes, reducing hydrochory, and shifting communities to later successional stages, dams reduce downstream plant diversity. Dam removal could reverse these processes, but the release of large volumes of sediment could have unexpected, transient effects.
View Article and Find Full Text PDFGlobally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment.
View Article and Find Full Text PDFOne of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam.
View Article and Find Full Text PDFHuman activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting.
View Article and Find Full Text PDFDams have been a fundamental part of the U.S. national agenda over the past two hundred years.
View Article and Find Full Text PDFMost studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.
View Article and Find Full Text PDFIn semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO₂ might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO₂ and water availability on seedlings of two native (Populus deltoides spp.
View Article and Find Full Text PDFIn restoration ecology, reference sites serve as models for areas to be restored and can provide a standard of comparison for restoration project outcomes. When reference sites are located a relatively long distance from associated restoration projects, differences in climate, disturbance history, and biogeography can increase beta diversity and may decrease the relevance of reference sites. Variation in factors at the scale of individual reference sites such as patch size, microclimate, barriers to dispersal, or soil chemistry can result in reference site species composition that is a nested subset of the regional species pool.
View Article and Find Full Text PDFThe 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community.
View Article and Find Full Text PDFNon-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar.
View Article and Find Full Text PDFRussian-olive (Elaeagnus angustifolia) is a small Eurasian tree that has escaped from cultivation and become naturalized, primarily along watercourses throughout the western United States. We examined germination and establishment of Russian-olive and plains cottonwood (Populus deltoides), the principal native riparian tree of the Great Plains, under a range of experimental moisture and light conditions. The fewest seedings established under the driest conditions; seedling biomass was predictably lower in the shade; root-to-shoot ratios were higher for cottonwood, higher in the sun, and higher under drier conditions.
View Article and Find Full Text PDF